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 Abstract 

Due to the limited scattering of local scatterers on the 

BS side in fifth-generation massive multiple-input 

multiple-output systems, the channels tend to be 

sparse. As a result, it is better to extract the potential 

sparsity in the channel estimation process and use 

compressive sensing as a very good working method 

for estimation efficiency. For this reason, in this paper, 

after analyzing the structure of massive multiple-input 

multiple-output systems, we examine the method of 

compressive sampling and compressive measurement 

sizes, and follow the methods of retrieval of sparse 

signals, including BP and LASSO, and then from it, 

we analyze the challenges of implementing massive 

multiple-input multiple-output systems and the work 

done in this field, and at the end, we simulate the 

proposed channel estimation solution, in which using 

compressive sensing in these systems and compared 

with other proposed methods, we realize the 

superiority of the proposed method.  
Keywords: compressive sensing, sparse 

signal, compressive measurement, sparse 

recovery. 

1- Introduction 
 
Much research has been done on the achievable 
limitations of multiple-input-multi-output systems, 
beginning with work such as (Keusgen, 2003)) and 
predicting that MIMO systems are capable of Provide 
high link rates telecommunications services as well as 
their reliability. Today, MIMO systems are at the core 
of wireless telecommunications standards such as 
LTE, IEEE 802.16 (WiMAX) and IEEE 802.11n 
(WiFi-n). Random multi-path fading, once a major 
barrier to reliable telecommunications, are now used 
to increase capacity C, quality of service (QoS), and 
signal-to-noise ratio. 
In general, a wireless telecommunication link is 
identified with three main components: 1- Noise, 2- 
Multi-path fading, 3- Interference. Today, multi-path 
noise and fading are not limiting factors for advanced 
MIMO receivers; instead, interference is significantly 
limiting. (Sanguino & Roberts, 2011, (Stüber et al., 
2004). 
Multiple antennas in the transmitter and receiver can 
be used to increase the rate of information through 
multiplexing or to provide system reliability through 
multiplication (Oestges & Clerckx, 2007). In order to 
increase capacity, independent information sequences 
are sent to the antennas. This is known as spatial 
multiplexing. Assuming that the transmitter antennas 
are well separated and that the medium has a good 
transmitter, the transmitted signals observe a specific 
space that allows the receiver to assemble sequences. 
To separate. Under optimal conditions, the capacity 
increases by amin(NT,NR) factor that is  NT and NR the 
number of transmitting and receiving antennas. In 
addition, most receivers need to beNR ≥ NT. Of course, 
the channel estimation algorithms discussed in this 
dissertation are not limited to this condition. 
An alternative to spatial multiplicity that increases a 
user's throughput is proposed using spatial 
multiplexing that intends to increase the signal-to-
noise ratio. In this case, the same information is sent 
from all transmitter antennas. It is relatively unlikely 
that all the links between the transmitter and receiver 
antennas will receive deep fading at the same time, so 

the transmission of a signal is very reliable. Spatial 
multiplexing and spatial multiplicity are two modes of 
interest for MIMO channels. 
In a wireless MIMO system, the throughput of a 
system is limited using existing interference. It is clear 
that increasing the SNR by increasing the transmitted 
power can not reduce the interference effect of other 
antennas. Therefore, advanced MIMO methods have 
an improved effect on interference and the possibility 
of reusing a resource. These methods can be divided 
into 4 parts, which include rejecting interference, 
avoiding interference, aligning interference, and using 
interference. Different strategies can be used for 
single-user and multi-user systems. An overview of 
MIMO methods applicable to fourth-generation 
telecommunications such as LTE-A is presented 
(Boudreau et al., 2009). One of the techniques that is 
considered is the use of beam forming. Using the 
amplitude and phase control of the signal emitted from 
each of the antennas, it is possible to provide 
directional transmission in such a way as to create 
constructive and destructive interferences at the 
desired angles. The receiver can also adjust its beam 
to reach the maximum direction to reach the maximum 
direction (Mietzner et al., 2009). The SNR interest that 
results from this is called the array interest. 
Because compressive sensing is a mathematical 
method for signal reconstruction from finite samoling, 
it suggests that sampling rates below the Nyquist rate 
are sufficient to reconstruct sparse signals. And uses 
the property of sparsity - being the primary signal. 
Compressive sensing methods perform better than 
other methods when working with sparse signals. We 
will see that using compressive-based methods, sparse 
channels can be estimated more accurately, and 
therefore lower bit error rates can be achieved. Due to 
the sparsityof the channel in mass multi-input multi-
output systems, compressive sensing is the best 
solution. 
 

1-1 Article Structure  
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The continuation of the article is as follows: in the 
second part, we will model narrowband MIMO, then 
in the third part, we will discuss compact sensor and 
define thin signal, compact size and methods of thin 
signal retrieval. In the following, we will analyze the 
challenges of implementing M-MIMO and the work 
done in this field, and then we will review the 
simulation performed, and finally, we will conclude 
the work of the proposed topics. 
 

2- Narrow Band MIMO Model 
 
For a MIMO system with NT transmit antenna and NR 

receive antenna, the MIMO channel for lth subcarrier 
of the kth OFDM symbol can be displayed as a H ∈

ℂNR×NT matrix. 
 

(1) 𝐇[l,k] =

[
 
 
 
h11[l,k]

h21[l,k]
⋮

hNR1[l,k]

h12[l,k]

h22[l,k]
⋮

hNR2[l,k]

…
…
⋱
…

h1NT
[l,k]

h2NT
[l,k]

⋮
hNRNT

[l,k]]
 
 
 

 

 
 
In this regard, hnm[l,k] is the gain of the channel 
between the n and m antennas and the receiver and 
transmitter in lth subcarrier from kth symbol. 
With complete channel information, the capacity of a 
MIMO system in a subcarrier is: 
 

(2) 
C = E {logdet (INR

+
γ

NT

𝐇[l,k]𝐇[l,k]H)} 

 
Which in this regard γ is the amount of SNR. 
Assuming that the channel matrix is complete and the 
total transmitted power is constant, the capacity 
increases linearlywith min(NT,NR). Linear increase is 
obtained by increasing the number of antennas only if 
both the transmitter and receiver increase their 
antennas simultaneously. If the number of antennas is 
limited on one side (for example in the receiver), the 
capacity is limited to NT and the push to NR log(1 + γ). 
On the other hand, if the number of transmitter 
antennas is constant and the receiver antennas 
increase, the capacity increases with log(NR). The main 
difference between the above two modes is that 
increasing the number of receiver antennas increases 
the received power. Of course, since the transmitted 
power is constant, the available power is distributed 
among all transmitted antennas. Therefore, the total 
power does not increase with the number of 
transmitter antennas. Figure (1) shows the capacity as 
a function of the number of transmitting and receiving 
antennas. 

 
Figure 1. Capacity in a MIMO system as a function of 

SNR and number of transmitter and receiver antennas 

(Noor-A-Rahim et al., 2011). 

3- Compressive Sensing 
We are at the heart of a digital revolution driven by the 

development and expansion of new measurement 

systems with increasing quality. The theoretical 

origins of this revolution are based on the early work 

of Kettlenikov, Nyquist, Shannon, and Whitaker on 

the sampling of finite and continuous time signals. (G. 

Baraniuk et al., 2011). Their results show that the 

signal, image, or sound can be completely 

reconstructed from samples of the same distance 

obtained from the original signal at the Nyquist rate. 

By applying this principle, many processing systems 

have been transformed from analog to digital. The 

digitalization of systems leads to the production of 

measurement and processing systems that are cheaper 

and more flexible. As a result of this success, the 

amount of information generated by the measurement 

systems turned from a drop to a flood. Unfortunately, 

in many important applications, the Nikequist rate is 

so high that we come across many examples. On the 

other hand, it may be impossible and costly to build a 

tool that can collect such samples at the required rate. 

We usually rely on compression to examine the logical 

and computational challenges we face in dealing with 

such large-scale information. One of the most popular 

techniques for signal compression is coding in the 

conversion domain, which seeks to find a basis that 

gives us a sparse or compressible representation of the 

signal. sparsity means a state in which the signal in 

length can be displayed with a non-zero coefficient, 

and compressible signal means a state in which the 

signal can be approximated only in a non-zero 

coefficient. Both sparse and compressible signals can 

be displayed with high quality while maintaining the 

value and location of the largest signal coefficients. 

This process is called sparsity approximation. 

Compressive sensing uses non-adaptive linear 

imagery that preserves the structure of the signal. This 

issue has received a lot of attention in recent years. The 

main reason for this attention is that in compressive 

sensing by replacing the sample concept with a new 

concept called measurement, the original signal can be 

retrieved with a much smaller number of 
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measurements compared to the required number of 

samples. Measurement is actually a random linear 

combination of signal samples with which the original 

signal can be reconstructed. compressive 

measurement significantly reduces sampling and 

computational costs for sparse and compressible 

signals. The Nyquist-Shannon sampling theorem 

states the minimum number of samples to detect a 

limited band signal; But if the signal is sparse, we can 

significantly reduce the number of sizes that need to 

be stored. As a result, we may be able to get better 

results than traditional results when measuring a 

sparse signal. compressive Sampling Instead of 

sampling at a high rate and then compressing the 

sampled data, there are ways to compress the data and 

then measure the data at a lower sampling rate. 

 

3-1 Sparse signal 

 

A signal 𝐱 ∈ ℛN is a signal with a sparsity S ≪ N on the 

space consisting of 𝛙1 to 𝛙N vectors, that is, the space 

𝚿 = [𝛙1,𝛙2, … ,𝛙N] we say, whenever 𝐱 it can be 

expressed by the linear composition of  S vector of the 

𝚿. that's mean, 
 

(3) 𝐱 = 𝚿𝛉 

Where 𝛉 is the coefficient vector N × 1 that has only S 

non-zero elements. Many real signals are not strictly 

sparse, but can be compressed into a specific space 

(that is, many non-zero vector elements are very small 

in that space (Candes & Romberg, 2005). Since only a 

small number of coefficients outperform the rest of the 

coefficients, compressible signals can be modeled 

with a thinner S signal that S contains a larger, non-

zero coefficient (E. J. Candès, 2006) 

3-1-1 Compressive Measurements 

In the compressive sensing, measurements are not 

obtained by direct sampling of the sparse signal, but 

by measuring a limited number of linear samples of 

the signal. Linear sizes can be expressed as: 

 

(4) 𝐲 = 𝚽𝐱 

 

Showed that 𝚽 it is an imaging matrix M × N and the 

number of dimensions M is much less than the N 

dimensions. Suppose we display the dimensions with 

𝐲 = [y1,y2, … ,yM]T and 𝚽 = [𝛟1,𝛟2, … ,𝛟M]T, then each 

dimension is equivalent to the image of 𝐱 on the 𝛟i 

signal, i.e. 

 
(5) 𝐲i = 〈𝐱,𝛟i〉 

 

Where i ∈ {1,2, … ,M}. If we achieve the product of 

internal multiplication in the analog field, then the 

sampling rate will decrease. 

Having dimensions 𝐲, the sparse signal 𝐱 can be 

reconstructed using the nonlinear optimization method 

and knowing that 𝐱  is sparse based on 𝚿. Of course, 

for a signal to be successfully reconstructed, the matrix 

𝚽 must have properties. Asymmetry matrixes 𝚽 and 𝚿 

is a key factor for successful reconstruction of 𝐱 . That 

is𝛟i, it does not have a compressive display on 𝚿 and 

𝛙i does not have a compressive display. (G. Baraniuk 

et al., 2011) using the following equation, a numerical 

criterion can be used to express the inconsistency of 

the two.( J. Candès et al., 2006). 

(6) μ(Φ,Ψ) = √Nsup{|〈𝛟i,𝛙j〉|:𝛟i ∈ 𝚽,𝛙j ∈ 𝚿} 

 

If 𝛟iand  𝛙
j
 have a single energy, thenμ ∈ [1,√N]. It 

should be noted that if each of the matrix elements is 

selected from a random distribution and i.i.d, it will 

most likely𝚽 be non-coherence with each base𝚿 and 

μ(𝚽,𝚿) closer to one. The conventional distributions 

used are the Gaussian and Bernoulli distributions. 

One way to construct a measurement matrix 𝚽 that 

retrieves a signal with sparsity S is to use the finite 

isometric property (RIP) of a matrix. For any integer 

S = 1,2, … ,N , the isometric constant δs for a matrix 𝚽 is 

the smallest number for which the relation 

 
(7) 

(1 − δs)‖𝐱‖2
2 ≤ ‖𝚽𝐱‖2

2 ≤ (1 + δs)‖𝐱‖2
2 

 

Hold for all signals sparsely. The matrix 𝚽 has the 

property of RIP order S, if δs is much smaller than one. 

Having the RIP property indicates that each subset of 

the 𝚽 matrix columns behaves with less cardinality 

than S an orthonormal system, indicating that x is not 

in the empty space of the 𝚽 matrix. If δ2s is small 

enough, we will have for two signals x1 and x2 that are 

sparse with S: 
(8) (1 − δ2s)‖𝐱1 − 𝐱2‖2

2 ≤ ‖𝚽(𝐱1 − 𝐱2)‖2
2

≤ (1 + δ2s)‖𝐱1 − 𝐱2‖2
2 

 

That is, the RIP property maintains the distance 

between each pair of signals with a sparsity S in the 

domain of size, which ensures the stable recovery of 

the signal with sparsity S of compact dimensions. The 

measurement matrix 𝚽 can be constructed with i.i.d 

data with a Gaussian random distribution with zero 

mean and variance 1
M⁄  or a Bernoulli random 

distribution with size1
√M

⁄ . It has been observed that if 

M = CK logN  ≪ N where C ≥ 1; The 𝚽matrix follows the 

RIP property and is suitable for stable signal 

reconstruction with sparsity S. 

The suitability of the stochastic measurement matrix 

for compact measurement can be investigated with the 

Johnson & Lindensterus (JL) Lam in the field of 

dimensional reduction (Johnson & Naor, 2010). If 𝚽 

made from a random distribution and all its rows are 

normalized, JL is established, then most likely the 

following relation is established: 

 
(9) 

(1 − ε)‖𝐱1 − 𝐱2‖2
2 ≤ ‖𝚽(𝐱1 − 𝐱2)‖2

2

≤ (1 + ε)‖𝐱1 − 𝐱2‖2
2 
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Where ε small enough and the signals are sparse. What 

is clear from Equation (9) is that the stochastic matrix 

is a stable encapsulation of sparse signals in the 

domain of measurements. The property of RIP can be 

deduced as a direct result of JL leakage (R. Baraniuk 

et al., 2008). 

Another way to obtain compact measurements is 

random sampling in a conversion domain 𝚼, which 

provides fast calculations if a fast conversion 

algorithm is available for the 𝚼 and 𝚿 domain. For 

sparse signal information, we see a small set 

ofconversion coefficients  𝐱 in 𝚼. Dimensions can be 

represented as 𝐲 = 𝚽𝐱  that 𝚽 matrix with M × N and 

M ≪ N. Each row of 𝚽 is a subset of 𝚼 atoms. If 𝚼 and 

𝚿 they are non-coherence and 𝛟i randomly selected, 

then they can𝐱 from 𝐲 most likely be reconstructed. 

 

2-1-3 sparse signal recovery 

A definite solution for sparse signal recovery is to 

solve the norm-l1 minimization  problem: 
(10) 

min‖𝛉‖1  subject to  𝚽𝚿𝛉 = 𝐲 

 

That ‖𝛉‖1 = ∑ |𝛉i|i . The solution 𝛉̂ to this problem is a 

sparse signal 𝐱∗ = 𝚿𝛉̂. The answer in Equation (10) 

provides a sparse representation of a signal that 

satisfies compact measurements. This method of 

reconstruction is called base chase (BP) (E. J. Candès 

et al., 2006) (Schwartz, 2011). Basic tracking is an 

efficient algorithm and can be accomplished with 

linear programming. 

The following theorem, from (E. Candès & Tao, 2005) 

and RIP links the measurement matrix to the success 

of thin signal reconstruction. 

Theorem: Berger et al., 2010) Suppose 𝐱 is a signal 

with sparsity of S and also holds for isometric 

constantsδ2sand δ3s and relationalδ2s + δ3s < 1, then the 

answer𝐱∗ corresponding to relation (10) is exact mean 

𝐱 = 𝐱∗. It is noteworthy that if fast algorithms are 

assigned to 𝚽 and 𝚿, then the BP algorithm can be 

realized using fast algorithms that make it possible to 

recover a sparse signal with large dimensions. In 

practice, the resulting linear measurements are 

destroyed by noise and as 
(11) 

𝐲n = 𝚽𝚿𝛉 + 𝐧 

 

Are modeled, which 𝐧 is a Gaussian white noise with 

a mean of zero. The recovery algorithm must consider 

the effect of noise. The sparse signal can be classified 

according to the relation using 𝐲n the Base Detection 

Algorithm (BPDN) as: 

 
(12) min‖𝚽𝚿𝛉 − 𝐲n‖2

2 + λ‖𝛉‖1  s,t,   𝐲n = 𝚽𝚿𝛉 + 𝐧 

 

Obtained where λ > 0 depends on the noise level. Here 

λ balances the task of norm-l2 minimization noise and 

norm-l1 minimization sparse signal. Careful selection 

of  the λ, has a significant effect on the estimated 

signal quality. 

For stable  sparse signal reconstruction, norm-l1 

minimization with noise measurements can be 

formulated with the LASSO problem. that's mean: 

 
(13) 

min‖𝛉‖1  s,t, ‖𝚽𝚿𝛉 − 𝐲‖ ≤ ε 

 

Where ε limits noise power in size. Problem (13) is a 

convex problem and efficient algorithms can be 

developed to solve it. The following theorem shows 

how accurate this problem is. 

Theorem: (E. Candès & Tao, 2005) Suppose δ2s < √2 −

1 then to answer the problem (13): 

 
(14) 

‖𝐱∗ − 𝐱‖2 ≤ C0‖𝐱
∗ − 𝐱s‖1√s + C1ε 

 

Where C0 and C1 are positive constants and 𝐱s an 

approximation of 𝐱 which all its components except to 

the S largest of them are zero. This theorem shows that 

the reconstruction error is limited to two terms. The 

first expression is the approximation error and the 

second expression is the noise level. They are shown 

to be fixed and small (E. J. Candès et al., 2006). 

Therefore, stable reconstruction of the sparse signal is 

achieved even with noise sizes. 

 

4. Challenges of M-MIMO Implementation 
and Work done in this Field 
With the advent of 5G, new needs have emerged in 

wireless telecommunications systems, including 

improved spectral efficiency, energy efficiency, and 

more information security. One of the conclusions to 

be drawn from the previous discussion is that capacity 

increases linearly with increasing factor. This result 

shows that a system needs an appropriate number of 

antennas to meet the demand for spectral efficiency. 

This idea has led to extensive research under the name 

of M-MIMO that the number of transmitting and 

receiving antennas reaches 10 to 100 antennas 

(Mohammed et al., 2009). In these systems, the 

channel between each user and the BS will be 

asymptotically perpendicular to the other user's 

channel. Another important advantage of these 

systems is the efficient reduction of energy required 

for transmission, which makes this technology one of 

the most important technologies for next generation 

wireless communication systems. 

In fact, M-MIMO systems are the same MIMO 

systems in which a large number of antennas of about 

100 or more antennas are used in the base station. 

These types of MIMO systems have brought new 

features to telecommunication systems, especially 

multi-user systems. For example, in (Jacobsson et al., 

2017), it has been shown that in a multi-user system, 

if the number of antennas used in BS is much greater 

than the number of users inside the cells, then by using 
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simple processing techniques completely eliminate 

adverse effects such as noise and intracellular 

interference. Another advantage of M-MIMO systems 

is their ability to significantly reduce the power 

consumption of users as well as BS (Lu et al., 2014). 

One of the most important and influential factors in the 

performance of M-MIMO systems is having channel 

information at the base station. This information is 

obtained by sending the pilot by the base station or 

users and estimating the channel. By using an array of 

antennas at the base station, the adverse effects of 

channel estimation can be reduced. The sparsity of the 

telecommunication channel in wireless systems means 

that very few channel coefficients are non-zero, 

providing the basis for the use of intensive 

measurement techniques and algorithms. Initial work 

focused on the issue of point-to-point links in MIMO, 

meaning that two devices with multiple antennas were 

connected to each other. In recent years, this issue has 

shifted to the more practical problem of multi-user 

systems. In this case, the BS serves multiple users 

simultaneously with multiple antennas, and the 

multiplexing benefit is shared among all users. In this 

method, expensive equipment is required only on the 

BS side and on the users side there can be only one or 

two simple antennas (Lu et al., 2014). 

Another advantage of M-MIMO systems is the 

achievement of greater efficiency as well as 

simplification of signal processing. As mentioned, in 

these systems BS are equipped with more antennas in 

the order of about 100 or more. It has been shown that 

this feature, along with simple linear processing, has 

greatly improved energy efficiency and spectrum. 

When it comes to M-MIMO systems, we are looking 

for systems that, while having all the benefits of 

conventional MIMO systems, can serve a much larger 

number of users at a specific frequency and time.( 

Larsson et al., 2014). Challenges with M-MIMO 

generally include the lack of high-performance 

computational algorithms in signal recognition and 

channel estimation. The application of particle swarm 

optimization (PSO) for M-MIMO channel estimation 

has been proposed and investigated (Knievel & 

Hoeher, 2012). On the other hand, using several 

hundred antennas in a limited space, such as handheld 

systems, is very difficult. 

Using M-MIMO, methods have been proposed for 

optimal use of dimensions and power (Rusek et al., 

2013). The base station, which is usually not limited 

in energy and space, is equipped with several hundred 

antennas, while mobile stations are limited to one 

antenna. This method has several advantages, for 

example channel estimation for Faraso link can be 

simplified using series development methods. Due to 

the large number of antennas in the Ferroso link, beam 

formation is optimal. 

One of the most important issues in M-MIMO is the 

pilot contamination due to the interference of the 

symbols. Generally, training sequences are 

orthogonally designed, although the number of 

orthogonal sequences is very small, in multicellular 

environments they must be split between adjacent 

cells, and the same pilot signals to estimate the channel 

to users. Which are located inside different cells. Pilot 

contamination, as shown in Figure (2), occurs when 

pilots are used in adjacent cells, and thus in the channel 

estimation phase, such as users' pilot signals. Adjacent 

cells are not perpendicular to each other, BS can not 

separate their channels from each other, and as a result, 

user channels located in different cells interfere with 

each other. Therefore, reducing the number of pilots 

required to estimate the thin channels made possible 

by the application of CS theory makes it possible to 

reduce pilot contamination in M-MIMO systems. An 

M-MIMO based system usually requires complex 

signal processing. Hence, much research has focused 

on the simplification and optimization of signal 

processing algorithms and their implementation. 

However, low-complexity algorithms generally 

reduce performance quality. This compromise is the 

most common scenario for any complex wireless 

system. For example, the more accurate the CSI, 

which increases performance, the greater the 

processing complexity. However, pilot contamination 

can be overcome using sophisticated channel 

estimation algorithms. 

 
Figure2. Pilot contamination of adjacent cells in the Frasso and 

Froso links (Zheng et al., 2015). 

The paper (Sadeghi and Azghani, 2021) proposes a 

sparse-based algorithm for more efficient channel 

estimation. For this purpose, a problem modeling is 

proposed to exploit the spatial correlation between 

different BS antennas as well as the similarity between 

the user of the channel support set. A repetition-based 

threshold method has been proposed to approximate 

the channel matrix, which has been effective in 

estimating the channel due to the large number of base 

station antennas and consequently the large number of 

channel paths. 

The paper (Zhao et al, 2020) proposes a low 

complexity estimation algorithm based on compact 

measurement for multi-antenna mobile terminals to 

reduce the terminal computational overhead. In this 

design, the mobile terminal estimates the downlink 
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massive multi-input multi-output channel and uses the 

spatial sparsity properties of the multi-input multi-

output channel to reduce the overhead. Since the 

different antennas of a terminal have the same set of 

support, this algorithm estimates several indices in 

each iteration and collects the estimated indices of the 

different antennas at the end of each iteration. As a 

result, it reduces the total number of iterations of the 

algorithm. It then obtains a stop condition for a greedy 

algorithm that stops the iteration process due to the 

residual energy. 

 

5- Simulation Results 
Many works have expressed the channel estimation for 

the TDD scenario in order not to fall under the heavy 

load of the downlink pilot and its feedback, and have 

taken advantage of its reciprocity feature. As CSI in 

the downlink is obtained from the CSI uplink. The 

reciprocity nature of the channel cannot be 

implemented in FDD systems because in the FDD 

mode, the downlink and uplink use different frequency 

bands and the CSIs are proportional to the different 

uplink and downlinks. But this is not a reason to ignore 

these methods, because in many telecommunication 

systems, they are the dominant methods in data 

transfers. FDD works well in symmetric and delay-

sensitive systems, and many cellular systems currently 

use FDD, so it can not be ignored. Usually, due to the 

low coherence time, it is not possible to consider the 

uplink channel specifications for downlink and this 

reduces the possibility of estimation accuracy in TDD. 

For this reason, in the simulation, we choose the FDD 

method and used the simulation specifications of the 

SOMP algorithm(Abedi et al, 2025). On the EPA 

channel at SNR = 20dB As shown in the figure(3), for 

≤β 18/82%, the proposed algorithm and the proposed 

modified algorithm have similar MSE performance 

and their performance is similar to that of the LS 

algorithm. This indicates that the proposed algorithm 

can reliably obtain the sparse channel level and the 

backup set for ≤β 18/82%. 

 
Figure3. Comparison of MSE performance of proposed 

algorithms and LS against pilot ratio and SNR = 20 dB. 

 

6. Conclusion 
In this paper, due to the importance of better 

specifying and estimating the channel of massive 

multi-input multi-output systems, we first examined 

the details of M-MIMO systems and with sparse signal 

and compact measurement and methods of sparse 

signal retrieval and its efficiency. We got acquainted 

with the fifth generation of wireless communications 

and then described their efficiency in the channel 

estimation systems used in the articles and examined 

their efficiency, and finally simulated our channel 

estimation algorithm using a compressive 

measurement to achieved fewer pilots and more 

efficient productivity. 
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