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Abstract 

Studies have revealed that a 

combination of classifiers is 

often more accurate than an 

individual classifier. A multiple 

classifier system can take 

advantage of the strengths of the 

individual classifiers, avoid their 

weaknesses, and improve 

classification accuracy. This 

system can be considered as an 

efficient mechanism to achieve 

the highest possible accuracy in 

medical classification problem. 

In this paper, we propose a new 

method for combination of 

multiple classifiers using 

Dempster-Shafer theory of 

evidence combination for mining 

medical data. We combine the 

beliefs of three classifiers: Multi-

Layer Perception Neural 

Network, K-Nearest Neighbor 

and Naïve Bayesian. Our 

experiments over the Breast 

Cancer Wisconsin dataset shows 

improvement compared to the 

classification results produced by 

the individual classifiers and 

other classifiers which use the 

combination methods. 
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Introduction 
Many researchers have realized that there 
exist limitations on using a single 
classification technique [1, 2]. The 
combination of multiple classifiers has been 
intensively studied with the aim of 
overcoming the limitations of individual 
classifiers [1-4]. The performance of a 
multiple classifier system relies on both the 
complementary participating classifiers and 
the combination method. Hence, the 
research efforts in this field have focused on 
either the generation of complementary 
classifiers or the combination of a given set 
of classifiers [3]. 
A multiple classifier has a combination 
algorithm that fuses the information coming 
from the individual classifiers and takes a 
decision on the new combined information. 
Some commonly used algorithms for 
combining classifiers include weighted 
majority voting [5], Borda count Bayesian 
[6], Behaviour Knowledge Space (BKS) [7, 
8] and Dempster-Shafer’s theory [1, 9, 10]. 
Since the outputs of individual classifiers are 
inputs to the combination module, it is 
therefore important to analyze what kinds of 
output information classifiers can support. 
The output information that most of the 
classifiers support can be divided into three 
levels: abstract level, rank level, and 
measurement level [11]. The abstract level 
classifiers output only the class label, and the 
rank level classifiers output the rank for each 
class. The measurement level classifiers 
assign each class a measurement value to 
indicate the possibility that the input instance 
pertains to the class. Neural networks are 
representative examples of measurement 
level classifiers. The measurement level 
classifier is able to provide richer information 
than the abstract and the rank level 
classifiers.The problems that are encountered 
in combining classifiers consist of two major 
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aspects [12]. The first one is closely 
dependent on specific applications, including 
how many classifiers to select for a specific 
application; what types of classifiers to use 
and what types of feature representations to 
choose for each classifier. The second aspect 
is related to issues that are general and 
common to applications, including the best 
way to combine classifier outputs in terms of 
the best combination of classifiers so that 
precise classification decisions can be 
achieved [11]. In this work, we focus our 
interest on how classifier outputs can be 
modeled as pieces of evidence and then they 
can be combined by using the Dempster-
Shafer theory of evidence for breast cancer 
diagnostic. The Dempster-Shafer theory of 
evidence is a powerful method for combining 
measures of evidence from different 
classifiers [13]. 
We propose a new Data Mining Multiple 
Classification approach that combines the 
output information of three individual 
classifiers, that are Multi-Layer Perceptron 
Neural Network, k Nearest Neighbors and 
Naive Bayes, based on the Dempster-Shafer 
theory of evidences, for improving the 
classification accuracy in the Breast Cancer 
Wisconsin (BCW) dataset. Classification 
results produced by the proposed Multiple 
Classification System shows improvement 
compared to the classification results 
produced by the individual classifiers and 
another tested common classifiers 
combination methods. 
The rest of this paper is organized as follows: 
Section 2 reviews the Dempster-Shafer 
theory of evidence. Section 3 discusses the 
existing methods for computing evidence. 
The proposed combination technique is 
presented in section 4. Experimental results 
and evaluations on BCW dataset are stated in 
Section 5. This section compares the 
proposed system with other conventional 
methods, and an older implementation of the 
Dempster-Shafer theory. Finally in Section 6, 
the conclusion and future research are given. 

I. The Dempster-Shafer theory of 

evidence 

The Dempster-Shafer (DS) theory of 
evidence [1, 9, 10] developed by Arthur 
Dempster, then by Glenn Shafer. It is a 
powerful tool for representing uncertain 

knowledge [14], and a combination of two 
distinct believes is well defined and various 
methods can be implemented to represent the 
evidence provided by the individual 
classifiers. So, it appears as a good tool for 
multiple classifiers. 
Let   be a finite set of possible hypotheses. 
This set is referred to as the frame of 

discernment, and its powerset denoted by 
2

. Following are the basic concepts of the 
theory: 
Basic Belief Assignment (BBA). A basic 
belief assignment m is a function that assigns 
a value in [0, 1] to every subset A of  and 
satisfies the following: 

0)( m  and 



A

Am 1)(                                                         

(1) 

where   is the empty set. m(A) represents 

the belief that the searched element is in A. 
Belief Function. The belief function, Bel, 
associated with the BBA m is a function that 
assigns a value in [0, 1] to every nonempty 

subset B of  . It is called “degree of belief 
in B” and is defined by 





BA

AmBBel )()(                                                                      

(2) 

Plausibility Function. The quantity 

)(1)( BBelBPl   called the plausibility of B 

defines to what extent one fails to doubt in 

B. i.e., what extent one finds B plausible. It 

is straight forward to show that: 





BA

AmBPl )()(                                                                    

(3) 

Combination rule. Consider two BBAs m1 

and m2 for belief functions Bel1 and Bel2 

respectively that coming from two different 

sources. Then m1 and m2 can be combined to 

obtain the belief mass committed to A  

according to the following combination or 

orthogonal sum formula, 

0,
1

)(
2

)(
1

))(
21

()( 




 A
N

ACB

CmBm

AmmAm      

        (4) 

where N is the conflict factor, ]1,0[N  : 





CB

CmBmN )(2)(1                                                             

(5) 

When N = 0, m1 and m2 are the same, while 
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when N = 1 there is total conflict and the 

combination of m1 and m2 results in an 

empty BBA m. The higher N is, the more the 

combined BBAs are in contradiction, thus N 

measures the conflict between both 

evidences represented in BBAs m1 and m2.  

Combining several belief functions. The 

combination rule can be easily extended to 

several belief functions by repeating the rule 

for new belief functions. Thus the pairwise 

orthogonal sum of n BBAs, nmmm ,...,, 21 , can 

be formed as  

imn
inmmmml

1
)...

3
)

21
((


                                           

(6) 

II. Existing methods 

Let T be the number of classifiers e1, …, eT 
and let C ={C1, …, CM} be a set of classes 
with M Classes. For any instance X, each 
classifier produces an output vector ei(X) , 
i=1, …, T. The output vector ei(X) is a vector 
where dimensions are classes of C and values 
are the degree of belonging to X to this class. 
Classifying X means assigning it into one 
class in C, i.e., deciding among a set of |C| 

hypotheses: X belongs to qC , q=1,…,M 

according to  ei(X). In DS terms, C is referred 
to as a frame of discernment, and the 
classifying process is regarded as one which 
decides the true value the proposition of that 
instance X belongs to Cq according to the 
knowledge e(X). e(X) can be regarded as a 
piece of evidence that represents the degrees 
of our support or belief for the proposition. 
Instead of 100% certainty, it only expresses 
some part of our belief committed to 

M
qC 2}{   and the rest of our belief remains 

unknown or indiscernible which cannot be 
directly derived from e(X) and the negation 
of the proposition. In the DS formalism, such 
a situation is regarded as rejection, and belief 
functions provide us with an effective way to 
express it. This is one of the attractive 
features of DS-based methods. The 
following of this section review DS-based 
methods for representing evidence and 
defining belief functions based on e(X). 
The reference [15] proposed a simple 
method of creating basic probability 
assignments (BBAs) by using recognition, 
substitution, and rejection rates (

i

s

i

r

i

s

i

r  1,, ). For a new instance X, a piece 

of evidence ei(X) is represented by the 
following belief function: 

},...,1{,,...,1))((})({ MqTiXie
i
rqCi

q
m                        

(7)                                                     

},...,1{,,...,1))((})({ MqTiXie
i
sqCi

q
m                        

(8) 

})({})({1)(
q

Ci
q

m
q

Ci
q

mCi
q

m                                              

(9) 

Where }{}{ qCCqC  . 

With T pieces of evidence existing, 
represented by T belief functions, the 
degrees of support for classes can be 
calculated through combining these belief 
functions by formula (4). A final class 
decision for a given instance is made on 
selecting the class with the largest degree of 
support. The drawback of this method is the 
way evidence is measured. This method 
ignores the fact that normally a classifier 
does not have the same performance on 
different classes, this might consequently 
degrade the combined performance of 
classifiers[13] . 
Rogova [16], proposed a model for 
combining the results of neural network 
classifiers using the DS theory. He used 
several proximity measures between a 
reference vector and a classifier’s output 
vector. The proximity measure that gives the 
highest classification accuracy was later 
transformed into evidences. The reference 

vector used was the mean vector, i

q  of the 

output set of each classifier ei and each class 

label q. A number of proximity measures, i
qd  

for i
q  and iy  were considered. iy  is the 

output of classifier ei. For each classifier ei, 
the proximity measure of each class Cq is 
transformed into the following BBAs: 

i
qdCi

qmi
qdqCi

qm  1)(,})({                              

(10) 





 qrr

i
rdqC

i
qjj

m
,1

)1(1})({
)(                           

(11) 

)
,1

1(})({1)(
)( 


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 qrr

i
rdqCi

jmCi
qjj

m                         

(12) 
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Finally, Dempster’s combination rule was 
used to combine evidences for all classifiers 
to obtain a measure of confidence for each 
class label. The major drawback of Rogova’s 
method is the way the reference vectors are 
calculated, where the mean of output vectors 
may not be the best choice [13]. Al-Ani and 
Derichi [13] proposed a similar method to 
apply the DS theory of evidence to 
combining neural network outputs. This 
method also treated the distance between a 
reference vector and a classifier output as a 
piece of evidence. But the difference from 
the previous work is in the way it obtains 
reference vectors. It first initializes 
reference vectors for each class, and then 
iteratively uses training instances to 
optimize reference vectors through 
minimizing the mean square errors between 
combined classifier outputs and the target 
outputs, ensuring the optimized reference 
vectors can be achieved. 
Finally, the distance between the optimized 
reference vectors and classifier outputs is 
defined as a piece of evidence and is 
represented by a simple support function. 

Let i
q  be an optimized reference vector. For 

any instance X, each classifier produces an 
output vector ei(X) , i=1, …, T, a simple 
support function is defined below: 







M

j

igi
jd

i
qd

qCi
qm

1

})({                                                           

(13) 







M

j

igi
jd

ig
qCi

qm

1

)(                                                               

(14) 

Where )2| |)(| |exp( Xie
i
q

i
qd   and gi is a 

coefficient to be tuned. 
In this method the way of obtaining reference 
vectors through minimizing the overall mean 
square error makes the process of combining 
classifiers trainable, which may lead to better 
performance than Rogova’s Method, but 
with the additional cost for training as well 
as additional training data [10].  
Unlike the methods above which were 
designed for combining classifiers in 
ensemble learning, Denoeux [14] proposed 
an evidence theoretic k-nearest neighbours 

(kNN) method for classification problems 
based on the DS theory. this method focuses 
on a single classifier in classifying new 
instances, by accounting for distances from 
their neighbors to determine class labels.  
Let D be a training data set, for instance, 

Dd  and let  be a set of the k-nearest 
neighbors of d according to some distance 
measures (e.g. Euclidian distance). 
Classifying d means assigning it to one of the 

classes CCq   based on the weights of 

representative classes of its neighbors. Thus 

the distance between d and neighbor id  

considered as a piece of evidence to support 
a proposition about the class membership of 
d. The evidence is represented by a simple 
support function as follows [14]: 

 iiq

i dddCm ,),(})({                                              

(15) 

),(1)( i

i ddCm                                                                 

(16) 

}},{{\2,0)( CCAAm q

Ci                                      

(17) 

where   was suggested to be ))(exp( 2i

and | || | i

i dd  .  

Denoeux’s method shows the advantage of 
permitting a clear distinction between the 
presence of conflicting information, as 
happens when an instance is close to several 
neighbors from different classes and 
incomplete information, when an instance is 
far away from any instances in its 
neighborhood. It proves to be very 
competitive with the standard kNN methods. 
Denoeux adapted a similar idea to a neural 
network classifier (ANN) [17]. 
Fadi Elmasri [18] used the kNN and ANN 
methods that proposed by Denoeux, and 
proposed a new Classification approach that 
combine the output information of three 
individual classifiers, that are Neural 
network, k Nearest Neighbors and Naive 
Bayes, based on the Dempster-Shafer theory 
of evidences, and showed that his idea 
improve the classification accuracy. 

III. The Proposed multiple classification 

system 

In this section, we propose a new Data 
Mining Multiple Classification approach that 
combines the output information of three 
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individual classifiers i.e. Multi-Layer 
Perceptron Neural network (MLP), k Nearest 
Neighbors (kNN) and Naive Bayes (NB), 
based on the Dempster-Shafer theory of 
evidences, for improving the classification 

accuracy. Figuse (1) shows the structure of 
the proposed Multiple Classification system. 

Let C = {C1, …, CM} be a set of classes 

where M is the number of classes.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) The structure of the proposed Multiple Classification system 

 

A. Proposed Multiple Classification Data Flow Steps

A.  

Following is the description of the data flow 
through the proposed Multiple Classification 
system: 

 In the first step, the normalized data 

forms the input of each individual 

classifier disjointedly. 

 Each Classifier independently 

processes the normalized data and 

produces its classification results in 

the form of measurement values for 

each data sample. We consider this 

values as a credibility rate. 

 The credibility rates produced by the 

different classifiers are 

simultaneously fed as an input to the 

evidences extraction module.  

 The extracted evidences from the 

evidences extraction module are fed 

as an input to the evidences 

combination module. The evidences 

combination module performs an 

evidence combination process using 

the Dempster-Shafer combination 

rule to produce the global class 

evidences for each data sample. 

 The global class evidences cross the 

threshold in the decision-making 

module to either assign the data 

sample to one class or reject it. 

 The final output results are either 

obtained as an abstract class label Cj 

(j=1, …, M) or as a rejection 

indication M+1. 

B. Structure of The Proposed Multiple 

Classification System 

The proposed multiple classification system 
consists of several, different purpose, 
connected modules. The modules are 
connected to emulate the data flow scheme 
mentioned in the previous section. The 
proposed multiple classification system 
consists of the following modules: 
 

a. kNN Module 

Decision 

Making 

Classified Data 

Module 

Data 

Global Class Evidences 

Evidences Evidences Evidences 

Dempster-Shafer combination 

Evidences 

Extraction 
Evidences 

Extraction 

Evidences 

Extraction 

Normalized Data 

NB Classifier 

 
MLP Classifier 

 

kNN Classifier 

Credibility rates Credibility rates Credibility rates 
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For Extraction the evidences from outputs of 
the classifiers, these classifiers must produce 
their output in the form of measurement 
level. In the kNN Classifier, each credibility 

rate could be equal to 
k

nq . nq is the number of 

objects belonging to class Cq among the k 
nearest neighbors.  However, such a method 
does not take into account the significant 
information that are distances dq = d(X, Xq), 
q = 1, ..., k associated to the k nearest 
neighbors X1 ,X2, . . . , Xk. We use the k-
nearest neighbours method that proposed by 
Denoeux that produce output in the form of 
measurement level. This output can be in 
form credibility (belief) or plausibility. 
If m is the BBA function, the credibility 
produced for each class Cq is: 

1,...,1)()(  Mq
q

Cm
q

CBel                                                

(18)                                                                                           
and the plausibility produced for each class 
Cq is: 

MqCm
q

Cm
q

CPl ,...,1)(})({})({                                 

(19)                                                                                

The Bel(Cq) function is considered when the 
option of having rejected data samples is 
applicable. Pl(Cq) function is considered 
when there is no rejection option. 
In this module, we use the Pl(Cq) function 
and we decide about rejection option in the 
decision module. We denote the Pl(Cq) with 
Cr(q) that is credibility rate and normalized 
in [0,1]. Thus the output of this module is: 

)}(),...,1({)}(),...,({ 1 MCrCrCPlCPlC MKNN                              

(20)                                                                            

 

b. MLP Module 
In the Multi-Layer Perceptron Neural 
Network (MLP) module the network used is 
a Multi-Layer Perceptron (MLP). The 

outputs of Network are O1, O2, ..., OM that are 
normalized so that their sum is 1. these values 
considered as credibility rates. 
The probability related to each class is then: 

iq OCP )(                                                                                       

(21)                                                                                                                       

We denote the P(Cq) by Cr(q) that is 
credibility rate. The output of this module is 
then: 

)}(),...,1({},...,
1

{ MCrCr
M

OOCMLP                                           

(22) 

 

c. NB Module 

We show each output )|( XCP q  of the Naive 

Bayes classifier (NB) in the form Cr(q) 

credibility rate. Thus the output of the NB 

module is: 
)}(),...,1({)}|(),...,|

1
({ MCrCrX

M
CPXCP

NB
C       

             (23)                                                                  

 

d. Evidences Extraction Module 
For extraction the evidences or BBAs, we use 
the Evidences Extraction Module. In this 
module for a classifier e(X), the classes in 
which consecutive variations between 
credibility rates Cr(q), q=1,…, M, are smaller 
than threshold ]1,0[t  form a proposition. In 

other words, this module groups the classes 
with close credibility rates into the same 
proposition, according to the credibility rate 

imprecision threshold t . To determine t  

conveniently for a given simple classifier, a 
series of tests with different training sets 
should be performed to calculate the average 
standard deviation of the credibility rates. 
The propositions and then the BBAs can be 
made with the following algorithm:  
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E .Evidence Combination Module 
This module is designed to combine the class 
evidences produced by different evidences 
extraction modules, using Dempster-Shafer 
combination rule. Thus the combination of 
the BBAs for the kNN classifier, the BBAs 
for the neural network and the BBAs for the 
Bayes classifier is made following 
combination rule: 

NBMLPkNN mmmm                                                                  

(27) 

A. Decision-making Module 

In this module the global evidences obtained 
from evidences combination module are 
examined to make the final decision about the 
tested data sample class label. A final class 
decision for a given data sample X is made 
on the following conditions: 

1. If rejN  , the class CJ (J=1,…M) is 

chosen to represent the class label of the data 

sample X, if 
)}(),...,2(),1(max{)( MPPPJP                                                

(28) 

where P(J) is the pignistic probability 
function with 





AJ A

Am
JP

||

)(
)(                                                                           

(29) 

 

2. If at least two classes CJ and CI share 

maximum pignistic probability, that is 
)}(),...,1(max{)()( MPPJPIP                                               

(30) 

Then, the data sample X is rejected.  
In such a situation the proposed multiple 
classification system returns the answer M + 
1.  

3. Else if rejN  , then the data sample X is 

rejected and returned the answer M + 1. In 

other words. the decision is rejected if the 

conflict factor N exceeds a pre-established 

threshold rej . N is a result of the 

combination. 

If rej  is 1, all decisions are accepted. As 

rej  lowers, the rejection rate increase. If 

rej  is 0, all decisions are rejected.  

IV. Experimental evaluation 

A. Experimental settings 

The submitting author is responsible for 
obtaining the agreement of all coauthors and 
any consent required from sponsors before 
submitting a paper. It is the obligation of the 
authors to cite relevant prior work. In our 
experiments, we used medical data to test 
and validate the accuracy of the proposed 

Algorithm 1 

1. Order all classes i by decreasing order of Cr(i) in a vector V, where V = [V(1), V(2), ..., 

V(M )] and where V(1) corresponds to the class with the highest credibility rate. 

2. Let two indexes a and j initialized to a = 1 and j = 1. 

3. Create a new empty proposition Aj. 

4. Put V(a) in Aj. 

5. Increment index a of 1. 

6. If a = M + 1, go to step 8. 

7. If Cr(V(a - 1)) - Cr(V(a)) < t , return to step 4, if not, increment j by 1 and return to step 3. 

8. Determine the m(Aj) that is associated BBA for each proposition Aj by the average 

credibility rate 
jA of all classes included in the proposition : 

S
Am

jA

j


)(                                                                               (24) 

with 

||

)(

j

Ai

A
A

iCr

j

j




                                                                               (25) 

where S is a normalization constant: 





Aj

Aj
S                                                                                      (26) 

9. End 
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multiple classification system. Breast Cancer 
Wisconsin (BCW) dataset is the data set used 
to test the accuracy of our proposed system 
downloaded from the UCI machine learning 
repository [19]. 
The proposed multiple classification system 
tries to improve the breast cancer diagnosis 
for new patient records. However, the BCW 
dataset forms a two-category classification 
problem regarding to the patient’s diagnosis 
results (Benign - Malignant). The objective 
is to identify each record in the dataset as a 
benign or a malignant record. 
We first test the three individual classifiers, 
that are Multi-Layer Perceptron Neural 
Network (MLP), k Nearest Neighbors (kNN) 
and Naive Bayes (NB) on this dataset and 
then the following combination methods 
were tested: the weighted linear combination 
(WLC), average (Av), median (Md), 
maximum (Mx), majority voting (MV), 
Elmasri’s DS method (DS0) [18], and our 
proposed classifiers combination method. 
Throughout the experiments, the validation 
method is 10-fold cross-validation [20]. The 
individual classifiers, MLP and NB, are 
taken from the Waikato Environment for 
Knowledge Analysis (Weka) version 3.4 
[21]. Parameters used for these two 
classifiers were set at the default settings in 
Weka. 

B. BCW Dataset 

BCW dataset has 699 records; each record 
consists of 11 features; record ID, diagnosis 
(2 for benign, 4 for malignant) and 9 integer-
value features between {1, …, 10}. The 
classes’ distribution for the BCW is 458 
benign (65.5%) and 241 malignant (34.5%) 
records and there are 16 records that contain 
a single missing (i.e., unavailable) feature 
value, now denoted by "?". we first replace 
this missing values with mean of values for 
this feature in other records. The 
experiments are performed using 90% of the 
dataset as training set (629 records) and 10% 
of the dataset as testing set (70 records). 

C. Experimental results 

The proposed kNN classifier evaluated for 
different values of k in 10 runs. The mean of 
the accuracy of 10 runs for each value of k is 
displayed in Table 1. It was observed that 
k=9 gives the best accuracy in most cases. 
Thus the number of k nearest neighbors is set 
to 9.  

 

Table 1. Mean of the accuracy of kNN 

with variation k in 10 runs 

K 1 3 5 7 9 11 13 

Accu

racy 

mean 

0 
86.

71 

89.

57 

89.

43 

93.

14 

92.

29 

91.

71 

 

To determine t  and rej  in the proposed 

multiple classification system, values 0, 0.2, 

0.4, 0.6, 0.8 and 1 selected for t , then for 

each of this values, values 0.2, 0.4, 0.6 , 0.8 
and 1 selected for rej , and then for each 

selected values for t  and rej , the proposed 

classifiers combination method tested for 10 
Runs. The highest recognition rate mean 

obtained by 98.43% with 1t  and 1rej  

 4.0t . Thus we selected andfor  1rej  

our proposed classifiers combination 
method. 
The confusion matrices for the classification 
results obtained from the three used 
individual classifiers and the proposed 
classifiers combination method in the first 
running are displayed in Table 2. Rows in the 
confusion matrix represent the actual class 
labels of the records to be classified, and the 
column with the label U represents the 
number of the rejected records (Uncertainty) 
of each classifier. B and M denote Benign 
and Malignant respectively. The confusion 
matrix of the classification results obtained 
using the proposed classifiers combination 
method shows an improvement in the 
classification accuracy up to 95.71%. 
The comparison between the classification 
accuracy obtained from 10 Runs for each one 
of the individual classifiers and for the 
proposed classifiers combination method are 
displayed in Table 3. This table shows that 
the proposed combination method produces 
classification accuracy that is higher than the 
classification accuracy produced by any 
individual classifier in Run 1, 2, 3, 4, 5, 6, 7, 
9, and 10. Also, it produces at least the same 
classification accuracy of the best individual 
classifier in Run 8. Moreover, the proposed 
combination method mean classification 
accuracy of 98.43% is higher than the best 
classifier mean classification accuracy of 
94.29%. 
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This experiment clearly shows that the 
classification accuracy is improved by 
4.14% using the proposed combination 
method. 
The confusion matrices for the classification 
results obtained from 7 different classifiers 
combination methods including the proposed 
classifiers combination method in the first 
running are displayed in Table 4. These 
matrices demonstrate the distribution of 
correct classified, misclassified and rejected 
records of the different tested combination 
methods. From the seven confusion matrices 
listed in Table 4 for the proposed classifiers 
combination method and the other 6 different 
combination methods, it is evident that the 
proposed classifiers combination method has 
the highest classification accuracy of 
95.71%. 
The classification accuracy and the mean 
classification accuracy produced by 10 Runs 
of the 7 different classifier combination 
methods including our proposed classifiers 
combination method are displayed in Table 
5. 
Table 5 illustrates the advantage of the 
classification accuracy results obtained from 
the proposed combination method over the 
classification accuracy results obtained from 

each one of the tested combination method. 
This advantage is confirmed based on the 
quality and consistency of the classification 
accuracy results of the proposed combination 
method in each Run’s classification results 
and the mean classification accuracy results 
of the 10 Runs. In this experiment, the 
proposed combination method produces 
classification accuracy that is higher than the 
classification accuracy produced by any 
tested combination method in Runs 1, 2, 3, 4, 
5, 6 and 10. Also, it produces at least the same 
classification accuracy of the best other 6 
different combination methods in Run’s 7 
and 9. However, our proposed method does 
not produce the highest classification 
accuracy in the Runs 8 but is produced 
relatively acceptable and consistent 
classification results accuracy. Also, the 
mean classification accuracy of the proposed 
combination method of 98.43% is higher than 
the best combination method mean 
classification accuracy of 97% produced by 
Elmasri’s DS method (DS0). This 
experiment clearly shows the classification 
accuracy superiority of the proposed 
combination method of 1.43% at least over 
any combination method tested in this 
experiment. 

 

 

 

Table 2. Confusion matrices for the individual classifiers and proposed method in run No.1 

 

 

 

kNN MLP NB Proposed Method 

 B M U  B M U  B M U  B M U 

B 33 2 0 B 33 2 0 B 33 2 0 B 35 0 0 

M 5 29 1 M 4 31 0 M 6 29 0 M 2 32 1 

Accuracy: 88.57 % Accuracy: 91.43 % Accuracy: 88.57 % Accuracy: 95.71 % 
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Table 3. Classification results of 10 Runs for the individual classifiers 

 

Run No. KNN MLP NB Proposed Method 

1 

2 

88.57% 91.4% 88.57% 95.71% 

92.86% 88.57% 94.29% 100% 

3 94.29% 97.14% 94.29% 98.57% 

4 91.43% 92.86% 90% 95.71% 

5 94.29% 97.14% 94.29% 98.57% 

6 97.14% 95.71% 97.14% 100% 

7 95.71% 92.86% 97.14% 97.14% 

8 97.14% 98.57% 97.14% 98.57% 

9 98.57% 98.57% 91.43% 100% 

10 92.86% 88.57% 94.29% 100% 

Mean 94.29% 94.14% 93.86% 98.43% 

 

Table 4. Confusion matrices for 7 different classifiers combination methods in run No.1 

 

MV MX AV MD 

 B M U  B M U  B M U  B M U 

B 33 2 0 B 33 2 0 B 33 2 0 B 33 2 0 

M 4 31 0 M 4 31 0 M 4 31 0 M 4 31 0 

Accuracy: 91.43 % Accuracy: 91.43 % Accuracy: 91.43% Accuracy: 91.43 % 

 

WLC DS0 Proposed Method  

 B M U  B M U  B M U     

B 33 2 0 B 34 1 0 B 35 0 0     

M 3 32 0 M 2 32 1 M 2 32 1     

Accuracy: 92.86 % Accuracy: 94.29 % Accuracy: 95.71 %  

 

Table 5. Classification results for 10 Run of seven classifiers combination method 

 

Run No. MV MX AV MD WLC DS0 Proposed Method 

1 91.43% 91.43% 91.43% 91.43% 92.86% 94.29% 95.71% 

2 95.71% 95.71% 95.71% 95.71% 95.71% 97.14% 100% 

3 97.14% 97.14% 97.14% 97.14% 97.14% 97.14% 98.57% 

4 94.29% 95.71% 94.29% 94.29% 94.29% 92.86% 95.71% 

5 97.14% 95.71% 97.14% 97.14% 97.14% 97.14% 98.57% 

6 98.57% 97.14% 98.57% 98.57% 98.57% 97.14% 100% 

7 97.14% 97.14% 97.14% 97.14% 97.14% 97.14% 97.14% 

8 98.57% 98.57% 98.57% 98.57% 98.57% 100% 98.57% 

9 100% 98.57% 100% 100% 100% 100% 100% 

10 97.14% 98.57% 97.14% 97.14% 97.14% 97.14% 100% 

Mean 96.71% 96.57% 96.71% 96.71% 96.86% 97% 98.43% 
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I. Conclusion 

The proposed multiple classification 
approach has been implemented using the 
Dempster-Shafer theory of evidence as a data 
fusion tool to combine the classification 
evidences produced by the different 
individual classifiers. The proposed system 
provides at least the same or a higher 
classification accuracy result than the 
classification accuracy produced by the most 
excellent individual classifiers before they 
are combined using the proposed system. 
Also, the proposed system produces 
classification accuracy result that is higher 
than the classification accuracy results 

produced by the popular combination 
systems tested in this work. 
For further research, the method proposed 
here can be used to additional classification 
problem domains with a different 
dimensionality, the number of classes and 
attributes ranges. The proposed system can 
be tested to perform the combination process 
on other different predictive or descriptive 
data mining tasks such as clustering, 
regression, and prediction. Also can be 
considered further extension of our approach 
to combine other different level classifiers 
such as rank level. 
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