
136

International Journal of Innovation in Computer Science and Information Technology

Vol.1, NO.3 , P:136 - 143

Received : 08 April 2019

Accepted : 15 June 2019

Automatic Test Data Generation Based on a Modified Genetic Algorithm

Amirhossein Damia

Faculty of Computer Engineering K. N.

Toosi University Tehran, Iran

damiaa@email.kntu.ac.ir

Abstract

Software Testing is one of the essential parts

of the software development lifecycle and

structural testing is one of the most widely

used testing principles to test various software.

In the structural test, the test data generation is

very important. Therefore, the problem

becomes a search problem and Search

Algorithms can be used. Genetic Algorithm

(GA) is one of the widely used algorithms in

this field. For the problem that GA suffers

from large iteration times and low efficiency in

test data generation, this paper proposes a

Modified Genetic Algorithm (MGA), in this

method, we design the chromosome

probability of crossover and mutation which

has relationship with chromosome

adaptability. Experimental result shows that

MGA has faster convergence speed and higher

test data generation efficiency compared with

traditional GA.

Keywords: Software Testing, Test Data

Generation, Search Algorithms, Genetic

Algorithm.

1. Introduction

Software testing is a main method for

improving the quality and increasing the

reliability of software now and thereafter the

long-term period future. It is a kind of

complex, labor-intensive, and time consuming

work; it accounts for approximately 50% of the

cost of a software system development [1].

Increasing the degree of automation and the

efficiency of software testing certainly can

reduce the cost of software design, decrease

the time period of software development, and

increase the quality of software significantly.

The critical point of the problem involved in

automation of software testing is of particular

relevance of automated software test data

generation. Test data generation in software

testing is the process of identifying a set of

program input data, which satisfies a given

testing criterion. For solving this difficult

problem, structural test data generation

technique have been used in the past.

Structural test data generation is either static or

dynamic [2]; this approach uses the

information of the internal structure of

programs, while the latter utilizes the runtime

information of programs through execution

with parametric input values. To measure

testing adequacy, i.e. how well a program is

tested by a set of test datas, many researchers

propose the use of different coverage criteria

(e.g. control flow criteria). In addition, testing

coverage criteria usually define the

termination condition of the testing process. In

the static method, there is no need to run the

program directly, so there are problems with

presentations and pointers. In the dynamic

method, the program needs to be run directly

and the problems related to the static method

have been solved. In recent years, GA have

been widely used by researchers to dynamic

test data generation. The efficiency of the GA

is affected by the crossover rate and the

mutation. To solve the problem, a high

crossover value and a low mutation value are

used using the GA and kept constant. Proper

setting of these parameters greatly increases

the efficiency of this algorithm. It is often very

difficult and time consuming to get such

settings. In this paper a MGA based on path

coverage criteria is used to test data generation.

This method has been proposed that in order to

obtain the best value for these parameters, the

value of these parameters is dynamically

obtained during execution due to the suitability

mailto:damiaa@email.kntu.ac.ir

137

of the population members. The results show

that the proposed method is better than the

traditional GA with a crossover and mutation

rate constant.

2. Genetic Algorithm

GA is proposed by Holland in his book

Adaptation in Natural and Artificial Systems in

1975 on the concept of survival of fittest. GA

are applied on the variety of problems such as

search based, optimization problems and

machine learning with AI domain. GA search

techniques are rooted in mechanism of

assessment and nature genetics. The survival

of fittest individuals comes from GA

inspiration form the natural search and

selection processes. Each individual is

represented by chromosome, GA select these

chromosome to generate a sequence of

populations by using a different selection

mechanism [3]. GA have the following basic

operations:

• Selection

• Reproduction

• Evolution

• Replacement

The first operation is selection in which

individuals are selected for reproduction. So

many selection operation already defined,

anyone can be applied for selection of

individual. These selection operations are

Roulette Wheel Selection, Linear Ranking

Tournament Selection etc. In reproduction

offspring are bred with selected individuals.

Crossover and Mutation operations are used in

reproduction. In crossover operation two

individuals exchange some information (if

individuals are represented in binary then some

binary numbers) at one point or at multiple

points. While in mutation only one bit has been

change. The evaluation process checks the

fitness on new generated individuals after

reproduction. In replacement the new

individuals takes the position of old

individuals. The old individuals are killed in

this process. Figure 1 provides a pseudocode

listing of the GA [4].

Figure 1. Pseudocode of GA.

This algorithm will stop when fitness meet or

until a maximum number of iteration has been

taken.

3. Structural Testing Using Genetic

Algorithm

Structural Testing checks the internal structure

of the program. The tester works with code,

loop and condition statement. In some research

works, code coverage and path testing are

discussed using the GA.

3.1. Path Testing

The aim of path testing is that every possible

logical execution path in a program must be

exercised at least once. A given test case

causes a program to take exactly one logical

path. However, one single logical path can be

triggered by multiple test datas. If many test

datas can cause the execution of one path, but

few can cause the execution of another path,

searching for test datas that trigger the rare

path is like looking for a needle in a haystack.

A domain of possible data of a program makes

a search space for path testing. Generating data

that traverse required paths for path testing

138

adequacy is a search. So, path testing is a

search for test data that meets path coverage

adequacy. Path testing is the strongest

coverage criterion in white structural testing. It

poses some challenges: justifying its use in the

first place, adequate target paths generation,

guiding heuristic, computational complexity,

and recognizing infeasible paths. Control flow

graph (CFG) uses the path to find all possible

paths in the program to find test errors. A CFG

is a directed graph G = (V, E), with two

distinguished nodes a unique entry 𝑛0 and a

unique exit 𝑛𝑘. 𝑉 is a set of nodes, where each

node represents a statement, and a 𝐸 is a set of

of directed edges, where a directed edge 𝑒 =
 (𝑛, 𝑚) is an ordered pair of adjacent nodes,

called tail and head of 𝑒, respectively. A path

in a CFG is a finite sequence of nodes

connected by edges [5].

4. Related work

Recently different techniques have been

proposed which are based on GA to test data

generation. McMinn [6] and Mantere [7]

survey some of the work undertaken in this

field. Xanthakis et al. in [8] is presented the

first work applying GA to test data generation.

In this work GA are employed to test data

generation for structures not covered by

random search. A path is chosen by the user,

and the relevant branch predicates are

extracted from the program. The GA is then

used to find input data that satisfies all branch

predicates at once, with the fitness function

summing branch distance values. Pei et. al. [9]

presented a new approach focuses on pathwise

test data generation. Where the basic

operations of pathwise software testing consist

of there steps: program CFG construction, path

selection, and test data generation and dynamic

program execution. This approach manually

selects the set of paths limited to 2 loops. The

overall suitability by the chromosome, that is

the matching degree between the path of

practical execution and the ideal required path

they set, is termed its fitness. The value of

fitness function of a chromosome reflects the

path of the program executing on the input

values of all variables represented by the

chromosome how good it complies with the

user selected path.

James andrews et.al have discussed

Nighthawk, a system which uses GA to find

parameters used for randomized unit testing.

Feature subset selection tool is used to access

the size and content of the representations

which is helpful in reducing the size of

representations. This GA achieves 100% of

results in only 10% of time [10]. Vivek

Kothari, Satish Chandra discussed a

modification to the artificial bee colony (ABC)

algorithm which reduces its variations by

applying genetic operators to the ABC

algorithm. In this crossover phase is used to

provide better solutions as it helps solutions to

persist in the population [11]. Soma Sekhara

Babu Lama et.al discussed generation of

feasible independent paths. ABC algorithm is

used for test data generation where parallel

behavior of the bees makes test data generation

efficient and faster and path is selected based

on the priority of all edge coverage criteria.

This technique helps to solve local optima

problem [12]. Sanjay Singla et.al presents a

technique which is based on GA and particle

swarm optimization (PSO) algorithm that is

used to automatically test data generation for

data flow coverage. A number of programs of

different size and complexity are used to

analyze performance which shows its coverage

ratio is more [13]. Tai-hoon Ki et.al have

discussed the application of GA in software

testing. This algorithm works on CFG.

Assigning weights to edges of CFG,

distribution of weights, fitness value is

calculated, probability is calculate,; crossover

is done and mutation is done. In this GA

outperforms the exhaustive search and local

search techniques by examining the most

critical paths first a more effective way to

approach testing is obtained which in turn

helps to refine effort and cost estimation in the

testing phase[14]. Sapna Varshney et.al

proposes a novel approach based on GA to test

data generation for a program. Its performance

is evaluated based on data flow dependencies

of a program by comparing with random

testing. Based on the experimental results on a

number of C programs, it shows that the

proposed approach outperforms random

testing in test data generation and optimization

[15]. Bueno and Jino proposed an approach

that utilizes control and data flow dynamic

information. The proposed approach is meant

139

to fulfil path coverage testing. In addition, it

also tackles the identification of potentially

infeasible program paths by monitoring the

progress of the search for required test data.

The approach considers a continual

population’s best fitness improvement as an

indication that a feasible path is covered. On

the other hand, attempts to generate test data

for infeasible paths result, invariably, in a

persistent lack of progress [16].

5. Test data generation using MGA

An initial population of individuals, each

represented by a randomly generated

genotype, is created. The MGA starts to evolve

good solutions from this initial population. The

three basic genetic operators: selection,

crossover and mutation carry out the search.

Genotypic strings can be thought of as points

in a search space of possible solutions. They

specify a phenotype which can be assigned a

fitness value. Fitness value affects selection

and in this way guides the search.

Test data execution: The resulting set of test

cases produced by the MGA needs to be

executed in order to compute their fitness and

also to check the correctness of the results.

Test coverage computation: The analysis of the

program under test is performed manually for

the time being, and all the information is stored

in files for later use by the MGA. Although this

may sound very time consuming, it does not

actually affect the execution time of the MGA,

since this process takes place only once and

prior to the execution of the algorithm.

Program under test: A program for which the

test data is to be generated is considered.

5.1. Population Initialization

In this paper, population size 20 was

considered. The size of each chromosome of

this population was n*m. n is the number of

paths in the program under test and m is

number of input variables program under test.

5.2. Fitness Function

In this way, we assume that the number of all

paths in the related program is known and

define the fitness function in equation (1)

below, which is normalized to values between

0 𝑡𝑜 1.

𝑓 =
𝑘

𝑛
 (1)

In equation (1), 𝑓 is the evaluation function, 𝑘

is the number of the paths that chromosome

has covered; 𝑛 is the number of all paths in the

corresponding programs. The individual who

achieves an evaluation value 𝑓 = 1 means that

the individual has covered all paths in the

corresponding programs, and it is the optimal

solution to the problems.

5.3. Selection

After computing the fitness of each

chromosome in the current population, MGA

uses the tournament method to select

chromosome from members of the current

population that will be parents of the new

population.

5.4. Crossover

In this paper, MGA uses the uniforms

crossover and crossover rata (pc) for each

chromosome according to equation (2),

updated at each round of execution.

𝑝𝑐𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒(𝑖) = {
. 50 + 𝑓𝑎𝑣𝑔 ∗ (1 − 𝑓𝑖) + (𝑓𝑚𝑎𝑥 − 𝑓𝑖) 𝑓𝑖 < 𝑓𝑎𝑣𝑔

. 50 + 𝑓𝑎𝑣𝑔 ∗ (1 − 𝑓𝑖) 𝑓𝑖 ≥ 𝑓𝑎𝑣𝑔
}

(2)

In equation (2), 𝑓𝑎𝑣𝑔 is the average fitness of

chromosomes, 𝑓𝑚𝑎𝑥 maximum the fitness of

chromosomes, and 𝑓𝑖 is the fitness of

chromosome 𝑖. if chromosome 𝐴𝑖 and

chromosome 𝐵𝑖 are selected for crossover

operations, then

𝑝𝑐 = 𝑚𝑎𝑥 (𝑝𝑐_𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 (𝐴𝑖) , 𝑝𝑐_𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒(𝐵𝑖)).

5.5. Mutation

Mutation introduces slight changes into a small

proportion of the population and is

representative of an evolutionary step. In this

paper mutation rata (pm) for each chromosome

according to equation (3), updated at each

round of execution.

𝑝𝑚𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒(𝑖) =

140

 {
𝑓𝑚𝑎𝑥 ∗ (1 − 𝑓𝑖) 𝑓𝑖 < 𝑓𝑎𝑣𝑔

𝑓𝑚𝑎𝑥 ∗ (1 − 𝑓𝑖) ∗ 𝑓𝑎𝑣𝑔 𝑓𝑖 ≥ 𝑓𝑎𝑣𝑔
} (3)

5.6. Stopping condition

Termination conditions in MGA specify the

stopping criteria after the desired solution is

obtained in few numbers of iterations.

Termination condition in MGA can occur

because of the following reasons:

• Finite number of generation (in this

paper is 50000)

• Optimized solution is obtained.

6. Experimental Setup

Taken an example of triangle classification for

implementing of given proposed method. This

program is one of the most important programs

that other previous works have used for the test

[17] [18] [19]. The code for this program is in

Python programming language below:

print("Input lengths of the triangle sides: ")

x = int(input("x: "))

y = int(input("y: "))

z = int(input("z: "))

if x == y == z:

print("Equilateral triangle")

elif x==y or y==z or z==x:

print("isosceles triangle")

else:

print("Scalene triangle")

CFG for this program is given in Figure2.

Some evaluation criterions to test the

effectiveness of MGA than GA are listed as

follows (each algorithm is executed 50 times):

Time: recorded the start and end times for find

test data in each execution for each algorithm,

and calculated the search time using equation

(4).

𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑖𝑚𝑒 = 𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒.
(4)

Figure 3 shows the search time for test data

generating to satisfy the paths in each

execution for each algorithm. Figure 4 shows

the average search time for these algorithms.

Number of generations: recorded the number

of generations for find test data in each

execution for each algorithm.

Figure 5 shows the number of generations for

test data generating to satisfy the paths in each

execution for each algorithm. Figure 6 shows

the average number of generations for these

algorithms.

In these experiments, for the GA, the crossover

rate .90, mutation rate .15, and population size

20 was considered [20].

Figure 2. CFG triangle classification.

141

Figure 3 search time.

Figure 4 average search time.

Figure 5 number of generations.

Figure 6 average number of generations.

142

7. Conclusion

This paper mainly introduces how to apply the

genetic algorithm to get the method and

technology of software structural test data

generation on the basis of the path coverage.

This article uses a modified genetic algorithm

that calculates the rate of crossover and

mutation during the execution of the

algorithm. The results suggest that this method

is superior to the traditional GA. For future

work, we intend to compare the results of this

method with the results of other algorithms

such as particle swarm optimization algorithm,

bees algorithm, ant colony optimization

algorithm, simulated annealing algorithm, hill

climbing algorithm and tabu search algorithm.

References

1. [1] Myers, Glenford J., Corey Sandler,

and Tom Badgett. The art of software testing.

John Wiley & Sons, 2011.

2. [2] Lonetti, Francesca, and Eda

Marchetti. "Emerging software testing

technologies." Advances in Computers. Vol.

108. Elsevier, 2018. 91-143.

3. [3] Holland, J. H. "Adaptation in

Natural and Artificial Systems, the University

of Michigan Press, Ann Arbor, MI. 1975."

(1975).

4. [4] Brownlee, Jason. Clever

algorithms: nature-inspired programming

recipes. Jason Brownlee, 2011.

5. [5] Ammann, Paul, and Jeff Offutt.

Introduction to software testing. Cambridge

University Press, 2016.

6. [6] McMinn P. Search-based Software

Test Data Generation: A Survey. Journal of

Software Testing Verification and Reliability,

vol.14, no.2, pp.105-156, June 2004.

7. [7] Mantere T, Alander J T.

Evolutionary Software Engineering, A

Review. Journal of Applied Soft Computing,

vol.5, pp.315-331, 2005.

8. [8] Xanthakis S, Ellis C, Skourlas C, Le

Gall A, Kastiskas S, Karapoulios K.

Application of genetic algorithms to software

testing (Application des algorithms génétiques

au test des logiciels). In 5th International

Conference on Software Engineering and its

Applications, pages 625-636, Toulouse,

France, 1992.

9. [9] Pei M,. Goodman E D, Gao Z,

Zhong K. Automated Software Test Data

Generation Using A Genetic Algorithm.

Technical Report GARAGe of Michigan State

University June 1994.

10. [10] James H. Andrews, Tim Menzies

and Felix C.H. Li, “Genetic Algorithms for

Randomized Unit Testing”, IEEE

TRANSACTIONS ON SOFTWARE

ENGINEERING, February, 2011.

11. [11] Vivek Kothari, Satish Chandra,

“The Application of Genetic Operators in the

Artificial Bee Colony Algorithm”, IEEE

International Conference on Recent Advances

and Innovations in Engineering, May, 2014.

12. [12] Soma Sekhara Babu Lama, M L

Hari Prasad Rajub, Uday Kiran Mb, Swaraj

Chb, Praveen Ranjan Srivastavb, a*,

“Automated Generation of Independent Paths

and Test Suite Optimization Using Artificial

Bee Colony”, International Conference on

Communication Technology and System

Design, 2011.

13. [13] Sanjay Singla, Dharminder

Kumar, H M Rai and Priti Singla1, “A Hybrid

PSO Approach to Automate Test Data

Generation for Data Flow Coverage with

Dominance Concepts”, International Journal

of Advanced Science and Technology Vol. 37,

December, 2011.

14. [14] Praveen Ranjan Srivastava and

Tai-hoon Kim, “Developing optimization

algorithm using artificial bee colony system”

“International Journal of Software Engineering

and Its Applications” October 2011.

15. [15] Sapna Varshney, Monica

Mehrotra, “ Automated software test data

generation for data flow dependencies using

genetic algorithm”, IJARCSE, February,2014

16. [16] Bueno PMS, Jino M.

Identification of potentially infeasible program

paths by monitoring the search for test data. In:

Proceedings of the fifteenth IEEE international

conference on automated software engineering

(ASE ‘00), Grenoble, France; 11–15

September 2000. p. 209–18.

17. [17] Zhang, N., Wu, B., & Bao, X.

(2015). Automatic generation of test cases

based on multi-population genetic algorithm.

143

Int. J. Multimedia Ubiquitous Eng., 10(6),

113-122.

18. [18] Bao, Xiaoan, et al. "Path-oriented

test cases generation based adaptive genetic

algorithm." PloS one 12.11 (2017).

19. [19] Mann, Mukesh, Pradeep Tomar,

and Om Prakash Sangwan. "Test Data

Generation Using Optimization Algorithm: An

Empirical Evaluation." Soft Computing:

Theories and Applications. Springer,

Singapore, 2018. 679-686.

20. [20] Ghiduk, Ahmed S., Mary Jean

Harrold, and Moheb R. Girgis. "Using genetic

algorithms to aid test-data generation for data-

flow coverage." 14th Asia-Pacific Software

Engineering Conference (APSEC'07). IEEE,

2007.

