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Abstract 

Software Testing is one of the essential parts 

of the software development lifecycle and 

structural testing is one of the most widely 

used testing principles to test various software. 

In the structural test, the test data generation is 

very important. Therefore, the problem 

becomes a search problem and Search 

Algorithms can be used. Genetic Algorithm 

(GA) is one of the widely used algorithms in 

this field. For the problem that GA suffers 

from large iteration times and low efficiency in 

test data generation, this paper proposes a 

Modified Genetic Algorithm (MGA), in this 

method, we design the chromosome 

probability of crossover and mutation which 

has relationship with chromosome 

adaptability. Experimental result shows that 

MGA has faster convergence speed and higher 

test data generation efficiency compared with 

traditional GA. 

Keywords: Software Testing, Test Data 

Generation, Search Algorithms, Genetic 

Algorithm.  

1. Introduction 

Software testing is a main method for 

improving the quality and increasing the 

reliability of software now and thereafter the 

long-term period future. It is a kind of 

complex, labor-intensive, and time consuming 

work; it accounts for approximately 50% of the 

cost of a software system development [1]. 

Increasing the degree of automation and the 

efficiency of software testing certainly can 

reduce the cost of software design, decrease 

the time period of software development, and 

increase the quality of software significantly. 

The critical point of the problem involved in 

automation of software testing is of particular 

relevance of automated software test data 

generation. Test data generation in software 

testing is the process of identifying a set of 

program input data, which satisfies a given 

testing criterion. For solving this difficult 

problem, structural test data generation 

technique have been used in the past. 

Structural test data generation is either static or 

dynamic [2]; this approach uses the 

information of the internal structure of 

programs, while the latter utilizes the runtime 

information of programs through execution 

with parametric input values. To measure 

testing adequacy, i.e. how well a program is 

tested by a set of test datas, many researchers 

propose the use of different coverage criteria 

(e.g. control flow criteria). In addition, testing 

coverage criteria usually define the 

termination condition of the testing process. In 

the static method, there is no need to run the 

program directly, so there are problems with 

presentations and pointers. In the dynamic 

method, the program needs to be run directly 

and the problems related to the static method 

have been solved. In recent years, GA have 

been widely used by researchers to dynamic 

test data generation. The efficiency of the GA 

is affected by the crossover rate and the 

mutation. To solve the problem, a high 

crossover value and a low mutation value are 

used using the GA and kept constant. Proper 

setting of these parameters greatly increases 

the efficiency of this algorithm. It is often very 

difficult and time consuming to get such 

settings. In this paper a MGA based on path 

coverage criteria is used to test data generation. 

This method has been proposed that in order to 

obtain the best value for these parameters, the 

value of these parameters is dynamically 

obtained during execution due to the suitability 
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of the population members. The results show 

that the proposed method is better than the 

traditional GA with a crossover and mutation 

rate constant. 

2. Genetic Algorithm 

GA is proposed by Holland in his book 

Adaptation in Natural and Artificial Systems in 

1975 on the concept of survival of fittest. GA 

are applied on the variety of problems such as 

search based, optimization problems and 

machine learning with AI domain. GA search 

techniques are rooted in mechanism of 

assessment and nature genetics. The survival 

of fittest individuals comes from GA 

inspiration form the natural search and 

selection processes. Each individual is 

represented by chromosome, GA select these 

chromosome to generate a sequence of 

populations by using a different selection 

mechanism [3]. GA have the following basic 

operations: 

• Selection 

• Reproduction 

• Evolution 

• Replacement 

The first operation is selection in which 

individuals are selected for reproduction. So 

many selection operation already defined, 

anyone can be applied for selection of 

individual. These selection operations are 

Roulette Wheel Selection, Linear Ranking 

Tournament Selection etc. In reproduction 

offspring are bred with selected individuals. 

Crossover and Mutation operations are used in 

reproduction. In crossover operation two 

individuals exchange some information (if 

individuals are represented in binary then some 

binary numbers) at one point or at multiple 

points. While in mutation only one bit has been 

change. The evaluation process checks the 

fitness on new generated individuals after 

reproduction. In replacement the new 

individuals takes the position of old 

individuals. The old individuals are killed in 

this process. Figure 1 provides a pseudocode 

listing of the GA [4]. 

 

 

Figure 1. Pseudocode of GA. 

 

This algorithm will stop when fitness meet or 

until a maximum number of iteration has been 

taken. 

 

3. Structural Testing Using Genetic 

Algorithm 

Structural Testing checks the internal structure 

of the program. The tester works with code, 

loop and condition statement. In some research 

works, code coverage and path testing are 

discussed using the GA. 

 

3.1. Path Testing 

The aim of path testing is that every possible 

logical execution path in a program must be 

exercised at least once. A given test case 

causes a program to take exactly one logical 

path. However, one single logical path can be 

triggered by multiple test datas. If many test 

datas can cause the execution of one path, but 

few can cause the execution of another path, 

searching for test datas that trigger the rare 

path is like looking for a needle in a haystack. 

A domain of possible data of a program makes 

a search space for path testing. Generating data 

that traverse required paths for path testing 
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adequacy is a search. So, path testing is a 

search for test data that meets path coverage 

adequacy. Path testing is the strongest 

coverage criterion in white structural testing. It 

poses some challenges: justifying its use in the 

first place, adequate target paths generation, 

guiding heuristic, computational complexity, 

and recognizing infeasible paths. Control flow 

graph (CFG) uses the path to find all possible 

paths in the program to find test errors. A CFG 

is a directed graph G = (V, E), with two 

distinguished nodes a unique entry 𝑛0 and a 

unique exit 𝑛𝑘. 𝑉 is a set of nodes, where each 

node represents a statement, and a 𝐸 is a set of 

of directed edges, where a directed edge 𝑒 =
 (𝑛, 𝑚) is an ordered pair of adjacent nodes, 

called tail and head of 𝑒, respectively. A path 

in a CFG is a finite sequence of nodes 

connected by edges [5]. 

 

4. Related work 

Recently different techniques have been 

proposed which are based on GA to test data 

generation. McMinn [6] and Mantere [7] 

survey some of the work undertaken in this 

field. Xanthakis et al. in [8] is presented the 

first work applying GA to test data generation. 

In this work GA are employed to test data 

generation for structures not covered by 

random search. A path is chosen by the user, 

and the relevant branch predicates are 

extracted from the program. The GA is then 

used to find input data that satisfies all branch 

predicates at once, with the fitness function 

summing branch distance values. Pei et. al. [9] 

presented a new approach focuses on pathwise 

test data generation. Where the basic 

operations of pathwise software testing consist 

of there steps: program CFG construction, path 

selection, and test data generation and dynamic 

program execution. This approach manually 

selects the set of paths limited to 2 loops. The 

overall suitability by the chromosome, that is 

the matching degree between the path of 

practical execution and the ideal required path 

they set, is termed its fitness. The value of 

fitness function of a chromosome reflects the 

path of the program executing on the input 

values of all variables represented by the 

chromosome how good it complies with the 

user selected path. 

James andrews et.al have discussed 

Nighthawk, a system which uses GA to find 

parameters used for randomized unit testing. 

Feature subset selection tool is used to access 

the size and content of the representations 

which is helpful in reducing the size of 

representations. This GA achieves 100% of 

results in only 10% of time [10]. Vivek 

Kothari, Satish Chandra discussed a 

modification to the artificial bee colony (ABC) 

algorithm which reduces its variations by 

applying genetic operators to the ABC 

algorithm. In this crossover phase is used to 

provide better solutions as it helps solutions to 

persist in the population [11]. Soma Sekhara 

Babu Lama et.al discussed generation of 

feasible independent paths. ABC algorithm is 

used for test data generation where parallel 

behavior of the bees makes test data generation 

efficient and faster and path is selected based 

on the priority of all edge coverage criteria. 

This technique helps to solve local optima 

problem [12]. Sanjay Singla et.al presents a 

technique which is based on GA and particle 

swarm optimization (PSO) algorithm that is 

used to automatically test data generation for 

data flow coverage. A number of programs of 

different size and complexity are used to 

analyze performance which shows its coverage 

ratio is more [13]. Tai-hoon Ki et.al have 

discussed the application of GA in software 

testing. This algorithm works on CFG. 

Assigning weights to edges of CFG, 

distribution of weights, fitness value is 

calculated, probability is calculate,; crossover 

is done and mutation is done. In this GA 

outperforms the exhaustive search and local 

search techniques by examining the most 

critical paths first a more effective way to 

approach testing is obtained which in turn 

helps to refine effort and cost estimation in the 

testing phase[14]. Sapna Varshney et.al 

proposes a novel approach based on GA to test 

data generation for a program. Its performance 

is evaluated based on data flow dependencies 

of a program by comparing with random 

testing. Based on the experimental results on a 

number of C programs, it shows that the 

proposed approach outperforms random 

testing in test data generation and optimization 

[15]. Bueno and Jino proposed an approach 

that utilizes control and data flow dynamic 

information. The proposed approach is meant 
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to fulfil path coverage testing. In addition, it 

also tackles the identification of potentially 

infeasible program paths by monitoring the 

progress of the search for required test data. 

The approach considers a continual 

population’s best fitness improvement as an 

indication that a feasible path is covered. On 

the other hand, attempts to generate test data 

for infeasible paths result, invariably, in a 

persistent lack of progress [16]. 

 

5. Test data generation using MGA 

An initial population of individuals, each 

represented by a randomly generated 

genotype, is created. The MGA starts to evolve 

good solutions from this initial population. The 

three basic genetic operators: selection, 

crossover and mutation carry out the search. 

Genotypic strings can be thought of as points 

in a search space of possible solutions. They 

specify a phenotype which can be assigned a 

fitness value. Fitness value affects selection 

and in this way guides the search. 

Test data execution: The resulting set of test 

cases produced by the MGA needs to be 

executed in order to compute their fitness and 

also to check the correctness of the results. 

Test coverage computation: The analysis of the 

program under test is performed manually for 

the time being, and all the information is stored 

in files for later use by the MGA. Although this 

may sound very time consuming, it does not 

actually affect the execution time of the MGA, 

since this process takes place only once and 

prior to the execution of the algorithm. 

Program under test: A program for which the 

test data is to be generated is considered. 

 

5.1. Population Initialization 

In this paper, population size 20 was 

considered. The size of each chromosome of 

this population was n*m. n is the number of 

paths in the program under test and m is 

number of input variables program under test. 

 

5.2. Fitness Function 

In this way, we assume that the number of all 

paths in the related program is known and 

define the fitness function in equation (1) 

below, which is normalized to values between 

0 𝑡𝑜 1. 

𝑓 =  
𝑘

𝑛
             (1) 

In equation (1), 𝑓 is the evaluation function, 𝑘 

is the number of the paths that chromosome 

has covered; 𝑛 is the number of all paths in the 

corresponding programs. The individual who 

achieves an evaluation value 𝑓 = 1 means that 

the individual has covered all paths in the 

corresponding programs, and it is the optimal 

solution to the problems. 

5.3. Selection 

After computing the fitness of each 

chromosome in the current population, MGA 

uses the tournament method to select 

chromosome from members of the current 

population that will be parents of the new 

population. 

 

5.4. Crossover 

In this paper, MGA uses the uniforms 

crossover and crossover rata (pc) for each 

chromosome according to equation (2), 

updated at each round of execution. 

𝑝𝑐𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒(𝑖) =  {
. 50 +  𝑓𝑎𝑣𝑔 ∗ (1 −  𝑓𝑖) + (𝑓𝑚𝑎𝑥 − 𝑓𝑖) 𝑓𝑖 <  𝑓𝑎𝑣𝑔

. 50 +  𝑓𝑎𝑣𝑔 ∗ (1 −  𝑓𝑖) 𝑓𝑖 ≥  𝑓𝑎𝑣𝑔
}

(2) 

 

In equation (2), 𝑓𝑎𝑣𝑔 is the average fitness of 

chromosomes, 𝑓𝑚𝑎𝑥 maximum the fitness of 

chromosomes, and 𝑓𝑖 is the fitness of 

chromosome 𝑖. if chromosome 𝐴𝑖 and 

chromosome 𝐵𝑖 are selected for crossover 

operations, then 

 

𝑝𝑐 =  𝑚𝑎𝑥 (𝑝𝑐_𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 (𝐴𝑖) , 𝑝𝑐_𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒(𝐵𝑖)).
 

 

5.5. Mutation 

Mutation introduces slight changes into a small 

proportion of the population and is  

 

 

 

representative of an evolutionary step. In this 

paper mutation rata (pm) for each chromosome 

according to equation (3), updated at each 

round of execution. 

𝑝𝑚𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒(𝑖) =
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 {
𝑓𝑚𝑎𝑥 ∗ (1 −  𝑓𝑖) 𝑓𝑖 <  𝑓𝑎𝑣𝑔

𝑓𝑚𝑎𝑥 ∗ (1 −  𝑓𝑖) ∗  𝑓𝑎𝑣𝑔 𝑓𝑖 ≥  𝑓𝑎𝑣𝑔
}        (3) 

 

5.6. Stopping condition 

Termination conditions in MGA specify the 

stopping criteria after the desired solution is 

obtained in few numbers of iterations. 

Termination condition in MGA can occur 

because of the following reasons: 

• Finite number of generation (in this 

paper is 50000) 

• Optimized solution is obtained. 

 

6. Experimental Setup 

Taken an example of triangle classification for 

implementing of given proposed method. This 

program is one of the most important programs 

that other previous works have used for the test 

[17] [18] [19]. The code for this program is in 

Python programming language below: 

 

print("Input lengths of the triangle sides: ") 

x = int(input("x: ")) 

y = int(input("y: ")) 

z = int(input("z: ")) 

if x == y == z: 

print("Equilateral triangle") 

elif x==y or y==z or z==x: 

print("isosceles triangle") 

else: 

print("Scalene triangle") 

CFG for this program is given in Figure2. 

Some evaluation criterions to test the 

effectiveness of MGA than GA are listed as 

follows (each algorithm is executed 50 times): 

Time: recorded the start and end times for find 

test data in each execution for each algorithm, 

and calculated the search time using equation 

(4). 

𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑖𝑚𝑒 =  𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 −  𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒.     
(4) 

 

Figure 3 shows the search time for test data 

generating to satisfy the paths in each 

execution for each algorithm. Figure 4 shows 

the average search time for these algorithms. 

Number of generations: recorded the number 

of generations for find test data in each 

execution for each algorithm. 

Figure 5 shows the number of generations for 

test data generating to satisfy the paths in each 

execution for each algorithm. Figure 6 shows 

the average number of generations for these 

algorithms. 

In these experiments, for the GA, the crossover 

rate .90, mutation rate .15, and population size 

20 was considered [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. CFG triangle classification. 
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Figure 3 search time. 

 

Figure 4 average search time. 

 

 

 

 

 

 

 

 

Figure 5 number of generations. 

 

 

 

 

 

 

 

 

 

Figure 6 average number of generations.
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7. Conclusion 

This paper mainly introduces how to apply the 

genetic algorithm to get the method and 

technology of software structural test data 

generation on the basis of the path coverage. 

This article uses a modified genetic algorithm 

that calculates the rate of crossover and 

mutation during the execution of the 

algorithm. The results suggest that this method 

is superior to the traditional GA. For future  

 

work, we intend to compare the results of this 

method with the results of other algorithms 

such as particle swarm optimization algorithm, 

bees algorithm, ant colony optimization 

algorithm, simulated annealing algorithm, hill 

climbing algorithm and tabu search algorithm. 
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