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Abstract 

Simultaneous Wireless Information and 

Power Transfer (SWIPT) systems are vital to 

implement wireless charging in contemporary 

Broadcast Channel (BC) systems. We would 

design a multi-user multi-antenna BC by 

simultaneously maximizing the sum of 

harvested energy and minimizing the sum 

Mean Square Error (MSE) for symbol 

detection at each receiver under imperfect 

Channel State Information (CSI) condition. 

We will find the minimum sum of harvested 

energy and exploit the Semidefinite 

Relaxation (SDR) method to find the worst 

case of the sum MSE. This multi-objective 

problem can be recast as a Difference of 

Convex (DC) bilinear problem. The derived 

problem is solved using the Alternating 

Convex Search (ACS) method and the Penalty 

Convex-Concave Program (PCCP)  

procedure. Simulation results are employed to 

address the benefits of the proposed 

algorithm. 

 

Keywords : Simultaneous Wireless 

Information and Power Transfer (SWIPT) 

systems, Difference of Convex (DC) problem, 

Penalty Convex-Concave Program (PCCP) 

procedure, Robust optimization 

Introduction 

One of the major challenges in Internet of 

Things (IoT) Network is to provide power to 

a large number of sensors. As you know, 

wireless signals carry both energy and 

information at the same time, therefore 

SWIPT (Simultaneous Wireless Information 

and Power Transfer) systems use this feature 

of wireless signals to transfer power and 

information concurrently. Hence SWIPT 

technology can be a promising solution to 

supply power for rising sensors in 5G 

infrastructure. In the SWIPT network, 

because the need to replace or charge the 

battery is eliminated, the network will never 

be out of service, so the SWIPT will increase 

the efficiency of the network. 

Because there are no standards and products 

in SWIPT yet, therefore must be much 

research and studying in this field. We have to 

deal with different aspects of this technology, 

such as information theory, circuit theory, 

communication theory, optimization, ⋯ . We 

analyze a SWIPT system from the perspective 

of optimization [1]. 

As you know increasing information rate 

reduces harvested energy and vice versa in 

SWIPT system [2]. Thus, a compromise is 

needed to determine the parameters of the 

system so that both the criteria of information 

rate and harvested energy in the system are 

maximized. In most papers, only one criterion 

is optimized and the other one criterion 

considered as a constraint in the problem [3]-

[4]. Unlike most research papers, in [5] and 

[6] both criteria, harvested energy and 

information rate, are optimized 

simultaneously. 

In designing wireless communication 

systems, the Channel State Information (CSI) 

is a parameter with no control over it. 

Therefore, with imperfect CSI, optimizing a 

wireless communication system is a hard 
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work. Usually, the precoders and equalizers of 

a wireless communication system are 

designed in such a way that if there are any 

fluctuations around nominal values, still some 

optimality conditions are satisfied [7]. In [8], 

there are one Road-Side Unit (RSU) with Nt 

transmit antenna and one single-antenna 

legitimate vehicle (LV) and k Eavesdropping 

vehicles (EVs) . The aim of this paper is to 

maximize the Secure Energy-Efficient (SEE), 

which is defined as the ratio of the achievable 

secrecy rate to the total power consumption of 

the system, with constraints of secrecy rate of 

the LV and the amount of the harvested 

energy by LV under imperfect CSI condition. 

By exploiting the maximum ratio 

transmission (MRT) scheme and the norm-

bounded matrix theory, the authors solve this 

non-convex problem. In [9], a two-user 

cooperative non-orthogonal multiple access 

(NOMA) transmission scheme is considered, 

by which the transmitter is equipped with N 

antennas and the two users, cell-center or near 

user and cell-edge or far user are equipped 

with a single antenna. . The aim of the system 

is to maximize the data rate of the near user 

while satisfying the data rate requirement of 

the far user. In [10], a secure relaying 

communication system, which consists of one 

single-antenna source and eavesdropper and a 

full-duplex (FD) legitimate destination with a 

dual separate antenna and a multi-antenna 

relay. The CSI between eavesdropper and 

relay, and eavesdropper and destination are 

imperfect. The relay transmit data to the 

destination when harvest energy from the 

source. the FD destination also acts as a 

jammer to cooperatively transmit artificial 

noise (AN) to degrade the received signal 

interference-plus-noise ratio (SINR) at the 

eavesdropper. The aim of this paper is to find 

precoding matrix and power splitter ratio at 

relay and AN power by maximizing the 

secrecy rate under the constraints of energy 

harvesting (EH) requirement at the relay and 

AN transmit power at the destination. This 

problem is a non-convex problem which 

authors solve it by using Semidefinite 

Relaxation (SDR) and successive convex 

optimization methods. 

In the current paper, we want to design a 

Multi-User Multi-Input Multi-output (MU-

MIMO) SWIPT system with k receivers each 

of which has two parts, information decoder 

(ID) and energy harvsting (EH) node. Every 

ID part is equipped with a decoder. 

Corresponding with each receiver, there is a 

precoder matrix in the transmitter. 

In our proposed method, we want to jointly 

optimize the precoders and decoders by 

simultaneously maximizing the sum of all 

energy harvested in all receivers, and 

minimizing the sum Mean-Square Error 

(MSE) of the symbol detection in them, with 

a constraint on the transmit power of the BS 

under imperfect CSI condition, the CSI of all 

links is uncertain and we would resort to 

Strictly Bounded Robust- Semidefinite 

Relaxation (SBR-SDR) [11],[12]. As it can be 

seen, this problem can be cast as global multi-

objective program which is a non-convex 

problem, i.e., a Difference of Convex (DC) 

problem. To solve DC problem we use a 

Penalty Convex-Concave Program (PCCP) 

procedure [13],[14] in which a first-order 

approximation of the convex function is used. 

 

 

System Model 

Let’s assume a MU-MIMO SWIPT system 

with one BS, and k users in a broadcasting 

configuration, i.e., one transmitter and k 

receivers. The BS is equipped with n antennas 

and each of the receivers has m antennas. 

Vector of 𝐬i ∈  ℂti×1, i = 1, ⋯ , k is 

transmitted to the ith receiver by BS, in which, 

ti is the number of symbols of the ith receiver. 

We suppose that the distribution of these 

symbols are complex normal with zero-mean 

and variance of one, i.e., 𝐬i ∼ CN(𝟎, 𝐈ti
). The 

noise at each receiver is also assumed to have 

a complex normal distribution, i.e., 𝐧i ∈
 ℂm×1 ∼ CN(𝟎, σn

2𝐈𝐦). At the transmitter side, 

each vector of symbols is precoded using a 

matrix 𝐀i ∈  ℂn×ti and would be equalized at 

the receiver side using a matrix 𝐁i ∈  ℂti×m. 

At the end, the output vector at each of the 

receivers is denoted by 𝐳𝐢 ∈  ℂti×1. In 

addition, the power splitter splits the received 

power, Pr, into two parts controlled using a 

parameter, α  (0 ≤ α ≤ 1). αPr portion of it is 

sent to the ID module while the rest of it, (1 −
α)Pr, is sent to the EH module. After 
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conversion, this energy is saved in a battery 

(BAT) that is used in uplink the mode. We 

also assume that the conversion efficiency of 

the EH module is 0 ≤ η ≤ 1. 

It should also be noted that the channel 

matrices of 𝐇i ∈  ℂm×n, between the BS and 

the ith user, are assumed to be imperfect and 

we want to design of the aforementioned 

system by solving a robust optimization 

problem with SBR-SDR method. The 

message at the BS is denoted by 𝐱 ∈n×1 . It 

can be written as 𝐱 = ∑k
i=1 𝐀i𝐬𝐢. 

The received signals of each reciever in the ID 

module can be written as: 

𝐲i,ID = √α (𝐇i𝐱 + 𝐧i) =  √α (𝐇i  ∑ 𝐀j𝐬j + 𝐧𝐢

k

j=1

) 

=  √α 𝐇i𝐀i𝐬i + √α ∑ 𝐇i𝐀j𝐬j
𝐤
j=1≠i + √α𝐧i                     (1) 

                                                            

while the received signal of EH module would be 

 

𝐲i,EH = √1 − α(∑ 𝐇i𝐀j𝐬j
k
j=1 + 𝐧i) .                       (2) 

 

At each receiver, the ID module would decode 

its received signal using Bi matrices and thus 

the output signal of each ID module would be 

 

𝐳i = 𝐁i𝐲i,ID =  √α 𝐁i𝐇i𝐀i𝐬i + √α ∑ 𝐁i𝐇i𝐀j𝐬j
𝐤
j=1≠i + √α𝐁i𝐧i             (3) 

 

 

The Proposed Algorithm with Imperfect 

CSI 

We want to find the best 𝐀i and 𝐁𝐢, i = 1, ⋯ , k 

matrices, such that the sum of harvested 

energy in their EH module is maximized 

while the sum MSE over all receivers is 

simultaneously minimized. It means that we 

want to solve both P1 and P2 problems at the 

same time:   

 

(P1)       min
{𝐀𝐢,𝐁𝐢}i=1

k
∑ MSEi

k
i=1                                         (P2)       max

{𝐀𝐢}i=1
k

∑ Qi
k
i=1  

                

s. t.           TxP ≤ P                                                      s. t.     TxP ≤ P 

𝐇i ∈ ℋi                                                                  𝐇i ∈ ℋi                        (4) 

 

Where 

Qi = η 𝔼[∥ 𝐲i,EH ∥2] = η(1 − α) [∑
k

j=1
∥ 𝐇i𝐀j ∥F

2+ mσn
2] 

 

is the harvested energy1 in each node      

TxP = 𝔼[∥ 𝐱 ∥2] = ∑
k

i=1
∥ vec(𝐀i) ∥2 

 

is the transmit power of the BS and it is limited by P, and    

MSEi = 𝔼[∥ 𝐳i − 𝐬i ∥2] =∥ √α𝐁i𝐇i𝐀i − 𝐈ti
∥F

2+ ασn
2 ∥ 𝐁i ∥F

2+ α ∑
k

j=1≠i
∥ 𝐁i𝐇i𝐀j ∥F

2 

                                                           
2- For convenience, in the sequel of the paper the two terms “energy” and “power” may be used interchangeably by         

assuming the symbol period to be equal to one.  
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is the MSE of the ith link and we assume every 

link is modeled with a Norm-Bounded Error 

(NBE), i.e., 

 

𝐇𝐢 ∈ 𝓗𝐢 = {𝐇̂i + 𝚫i |  ∥ 𝚫i ∥F ≤  δi  }               (5) 

 

in which 𝐇̂i is the nominal value of the 

channel, 𝚫i is the CSI uncertainty matrix and 

finally δi is the uncertainty bound.  

in this optimization problem. The problem, P1 

is a bi-convex problem, i.e., it is not 

simultaneously convex with respect to both 

arguments, but if one parameter, for example, 

𝐀i∀i, is fixed, the problem would be a convex 

one with respect to the second parameter. 

Problem P1 is studied in [12], and the authors 

use Alternating Convex Search (ACS) [15] to 

solve it. To solve both P1 and P2 problems 

simultaneously, which is a multi-objective 

non-convex problem, we use vector 

optimization for finding pareto optimal (or 

optimal) points [16]. Therefore the epigraph 

form of P1 and P2 can be written as (6) which 

is a convex-concave problem:   

 

 

min
𝐀,𝐁,{τi ,γi}i=1

k
{∑ τi − γi

k
i=1 |

TxP ≤ P , hi(𝐀) ≥ γi ,   ∀ i

∥ 𝛍i ∥2 ≤ τi , 𝐇𝐢 ∈ ℋi , ∀i
}                         (6) 

 

 

in which 

 

𝐀 = [𝐀𝟏, … , 𝐀𝐤] , 𝐁 = [𝐁𝟏, … , 𝐁𝐤] ,   hi(𝐀) = η(1 − α)[∑ tr(𝐇𝐢𝐀𝐣𝐀𝐣
𝐇𝐇𝐢

𝐇) + mσn
2k

j=1 ]          (7) 

 

𝛍𝐢 = [

√α(𝐀𝐢
𝐓 ⊗ 𝐁𝐢)vec(𝐇𝐢) − vec(𝐈ti

)

√α MAT[{(𝐀𝐣
𝐓 ⊗ 𝐁𝐢)vec(𝐇𝐢)}j=1≠i

k ]

√ασnvec(𝐁𝐢)

]                                  (8) 

 

The (6) is a bi-linear DC problem which we 

would tackle it using PCCP with bi-convex 

semi-infinite constraints. Because of bi-

linearity we would use ACS and due to having 

semi-infinite constraints we should find the 

worst channel realization in which hi is 

minimized (SBR) and ∥ 𝛍i ∥2 is maximized 

(SDR). 

 

SBR Method 

The (6) can be recasted as 

 

min
𝐀,𝐁,{τi ,γi}i=1

k
∑ τi − γi

k
i=1                               (9a) 

 

s. t.               TxP ≤ P                               (9b) 

 

[ min
𝐇𝐢∈ℋi

hi(𝐀)] ≥ γi   ∀i                (9c) 

 

∥ 𝛍i ∥2 ≤ τi               ∀i                   (9d) 

 

∥ 𝚫i ∥F ≤  δi           ∀i                           (9e) 

 

 

To solve the inner problem of (9c) we start using (5) 
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𝑯𝒊
𝑯𝑯𝒊 = (𝑯̂𝑖 + 𝜟𝑖)

𝐻
(𝑯̂𝑖 + 𝜟𝑖) = 𝑯̂𝑖

𝐻𝑯̂𝑖 + 𝑯̂𝑖
𝐻𝜟𝑖 + 𝜟𝑖

𝐻𝑯̂𝑖 + 𝜟𝑖
𝐻𝜟𝑖                                              

(10) 

 

So, the uncertain set can be rewritten as: 

 

𝑯𝒊
𝑯𝑯𝒊 = Ȟ𝒊 ∈ 𝓗˘𝒊 = {𝑯̈𝒊 + 𝜟̈𝑖 ⃓ ∥ 𝜟̈𝑖 ∥𝐹≤ 𝝐𝒊 }                                                                              

(11) 

 

in which 

𝑯̈𝒊 = 𝑯̂𝑖
𝐻𝑯̂𝑖 , 𝜟̈𝑖 = 𝑯̂𝑖

𝐻𝜟𝑖 + 𝜟𝑖
𝐻𝑯̂𝑖 + 𝜟𝑖

𝐻𝜟𝑖.  

 

So using [11] it is possible to have the following equation 

 

𝜖𝑖 ≥∥ 𝜟̈𝑖 ∥𝐹=∥ 𝑯̂𝑖
𝐻𝜟𝑖 + 𝜟𝑖

𝐻𝑯̂𝑖 + 𝜟𝑖
𝐻𝜟𝑖 ∥𝐹 

 

≤ ∥ 𝑯̂𝑖
𝐻 ∥𝐹∥ 𝜟𝑖 ∥𝐹 + ∥ 𝜟𝑖

𝐻 ∥𝐹∥ 𝑯̂𝑖 ∥𝐹  + ∥ 𝜟𝑖
𝐻 ∥𝐹∥ 𝜟𝑖 ∥𝐹 

 

= 𝛿𝑖
2 + 2𝛿𝑖 ∥ 𝑯̂𝑖 ∥𝐹                                                           (12) 

 

Then, it is possible to choose 

𝜖𝑖 = 𝛿𝑖
2 + 2𝛿𝑖 ∥ 𝑯̂𝑖 ∥𝐹                                   (13) 

So, using (11) and (7) we have 

𝑡𝑟(𝑯𝒊𝑨𝒋𝑨𝒋
𝑯𝑯𝒊

𝑯) = 𝑡𝑟(𝑨𝒋𝑨𝒋
𝑯𝑯𝒊

𝑯𝑯𝒊) 

 

= 𝑡𝑟 (𝑨𝒋𝑨𝒋
𝑯(𝑯̈𝒊 + 𝜟̈𝑖)) .                            (14) 

Therefore we can rewrite (9c) 

 

𝑚𝑖𝑛
∥𝜟̈𝑖∥𝐹≤𝝐𝒊

𝜂(1 − 𝛼) [∑ 𝑡𝑟 (𝑨𝒋𝑨𝒋
𝑯(𝑯̈𝒊 + 𝜟̈𝑖)) + 𝑚𝜎𝑛

2𝑘
𝑗=1 ]                                                                          

(15) 

 

Equation (15) and then (9) can be simplified by using the following proposition. 

 

Proposition 1: For the terms  𝑡𝑟[(𝑩 + 𝑪)𝑨], using a norm-bounded variable 

𝑪, i.e.,∥ 𝑪 ∥≤ 𝜖  

, the minimizer and maximizer would , respectively, be 

𝑪𝑚𝑖𝑛 = −𝜖
𝑨𝐻

∥ 𝑨 ∥
 , 𝑪𝑚𝑎𝑥 = 𝜖

𝑨𝐻

∥ 𝑨 ∥
 

Proof: Proof can be found in [11]. 

Using the proposition we have: 

 

𝑚𝑖𝑛
∥𝑪∥≤𝜖

𝑡𝑟[(𝑩 + 𝑪)𝑨] = 𝑡𝑟(𝑩𝑨) − 𝜖 ∥ 𝑨 ∥                                                                                                 

(16) 

 

𝑚𝑎𝑥
∥𝑪∥≤𝜖

𝑡𝑟[(𝑩 + 𝑪)𝑨] = 𝑡𝑟(𝑩𝑨) + 𝜖 ∥ 𝑨 ∥                                                                                                

(17) 

 

 

and (9) can be recasted as: 
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𝑚𝑖𝑛
𝑨,𝑩,{𝜏𝑖 ,𝛾𝑖}𝑖=1

𝑘
∑ 𝜏𝑖 − 𝛾𝑖

𝑘
𝑖=1            (18a) 

 

𝑠. 𝑡.               𝑇𝑥𝑃 ≤ 𝑃                    (18b) 

 

ℎ̅𝑖(𝑨) ≥ 𝛾𝑖   ∀𝑖                               (18c) 

 

∥ 𝝁𝑖 ∥2 ≤ 𝜏𝑖       ,     ∥ 𝜟𝑖 ∥𝐹  ≤  𝛿𝑖      ∀𝑖             (18d) 

 

in which  

 

ℎ̅𝑖(𝑨) =  𝜂(1 − 𝛼)[∑ 𝑡𝑟(𝑨𝒋𝑨𝒋
𝑯𝑯̈𝒊) − 𝝐𝒊 ∥ 𝑨𝒋𝑨𝒋

𝑯 ∥𝐹+ 𝑚𝜎𝑛
2𝑘

𝑗=1 ]           (19) 

 

 

SDR Method 

The problem of (18) is a semi-infinite 

problem. It is possible to use the Schur  

 

 

complement lemma and recast (18d) as a 

semidifinite program (SDR) [12]. Using the 

Schur complement lemma (18d) is rewritten 

as an Linear Matrix Inequality (LMI): 

 

[
𝜏𝑖    𝝁𝑖

𝐻

𝝁𝑖     𝑰   
] ≽ 0 , ∥ 𝜟𝑖 ∥𝐹 ≤  𝛿𝑖   ∀𝑖.                       (20) 

 

To simplify (20), we use the following lemma which is due to Nemirovski [17]. 

 

Lemma 1: Given matrices 𝑾, 𝒀, 𝒁 with 𝒁 = 𝒁𝑯 the semi-infinite LMI of the form of                                                                 

𝒁 ⪰ 𝑾𝑯𝑿𝒀 + 𝒀𝑯𝑿𝑯𝑾,   ∀𝑿: ∥ 𝑿 ∥≤ 𝜌  holds if and only if  ∃𝜆 ≥ 0  such that  

[
𝒁 − 𝜆𝒀𝑯𝒀     − 𝜌𝑾𝐻

−𝜌𝑾              𝜆𝑰
] ≽ 0 

 

Proof: Proof can be found in [17]. 

Using (5), the constraint of (20) can be written as follows: 

 

[
𝜏𝑖    𝝁𝑖

𝐻̂

𝝁̂𝑖     𝑰   
] + [

0    𝝁𝜟𝒊

𝑯

𝝁𝜟𝒊
    𝟎   

] ≽ 0                                    (21) 

 

and 

µ̂𝑖 = [

√𝛼(𝑨𝒊
𝑻 ⊗ 𝑩𝒊)𝑣𝑒𝑐(𝑯̂𝑖) − 𝑣𝑒𝑐(𝑰𝑡𝑖

)

√𝛼 𝑀𝐴𝑇[{(𝑨𝒋
𝑻 ⊗ 𝑩𝒊)𝑣𝑒𝑐(𝑯̂𝑖)}𝑗=1≠𝑖

𝑘 ]

√𝛼𝜎𝑛𝑣𝑒𝑐(𝑩𝒊)

] ∈ ℂ𝒚𝑖×1    , 𝒚𝑖 = 𝑡𝑖 ∑ 𝑡𝑗
𝑘
𝑗=1 + 𝑚𝑡𝑖             (22) 

                                              

𝝁𝜟𝑖
= 𝑬𝑖 𝑣𝑒𝑐(𝜟𝑖)                   ,   𝑬𝑖 = [

√𝛼(𝑨𝒊
𝑻 ⊗ 𝑩𝒊)

√𝛼 𝑀𝐴𝑇[{(𝑨𝒋
𝑻 ⊗ 𝑩𝒊)}𝑗=1≠𝑖

𝑘 ]

𝟎𝑚𝑡𝑖×𝑚𝑛

]                                            (23)        

If 𝒁 = [
𝜏𝑖     𝝁𝒊

𝑯̂

𝝁̂𝑖     𝑰   
] , 𝑾 = [𝟎𝑚𝑛×1     𝑬𝑖

𝐻] , 𝑿 =  𝑣𝑒𝑐(𝜟𝑖), 𝒀 = [−1    𝟎1×𝑦𝑖
]  , 

 

 

then using Lemma 1, the 



9 
 

relaxed version of (21) would be:  

   

ℳ𝑖 = [

𝜏𝑖 − 𝜆𝑖            𝝁𝒊
𝑯̂           𝟎1×𝑚𝑛 

𝝁̂𝑖                    𝑰𝑦𝑖
       − 𝛿𝑖𝑬𝑖    

𝟎𝑚𝑛×1          − 𝛿𝑖𝑬𝑖
𝐻           𝜆𝑖𝑰𝑚𝑛           

] ≽ 0 , 𝜆𝑖 ≥ 0  ∀𝑖 .                                                          (24) 

 

So, (18) can be recasted as 

 

𝑚𝑖𝑛
𝑨,𝑩,{𝜏𝑖 ,𝛾𝑖,𝜆𝑖}𝑖=1

𝑘
{∑ 𝜏𝑖 − 𝛾𝑖

𝑘
𝑖=1 |

𝑇𝑥𝑃 ≤ 𝑃
ℎ̅𝑖(𝑨) ≥ 𝛾𝑖   ∀𝑖

ℳ𝑖 ≽ 0, 𝜆𝑖 ≥ 0  ∀𝑖 
}                                                                                   (25) 

 

The ACS method is employed to solve (25). If 

B is assumed to be known and constant, 

problem (26), and if 

A is assumed be known and constant, problem 

(27) can be derived 

 

 

𝑚𝑖𝑛
𝑨,{𝜏𝑖 ,𝛾𝑖,𝜆𝑖}𝑖=1

𝑘
{∑ 𝜏𝑖 − 𝛾𝑖

𝑘
𝑖=1 |

𝑇𝑥𝑃 ≤ 𝑃
ℎ̅𝑖(𝑨) ≥ 𝛾𝑖   ∀𝑖

ℳ𝑖 ≽ 0, 𝜆𝑖 ≥ 0  ∀𝑖 
}                                                                                       (26) 

 

𝑚𝑖𝑛
𝑩,{𝜏𝑖 ,𝜆𝑖}𝑖=1

𝑘
{∑ 𝜏𝑖

𝑘
𝑖=1 |ℳ𝑖 ≽ 0, 𝜆𝑖 ≥ 0  ∀𝑖 }.                                                                                                  (27) 

 

We use the PCCP algorithm to solve (26). To 

do so, first we should rewrite ℎ̅𝑖(𝑨) as a real-

valued function: 

 

 

 

 

𝑨̃𝒊 = 𝛯[𝑨𝑖] ∈ ℝ2𝑛×2𝑡𝑖  , 𝑯̃𝑖 = 𝛯[𝑯̈𝒊] ∈ ℝ2𝑛×2𝑛                                                                                            (28) 

 

Where 

𝛯[𝑿] = [𝛯1, 𝛯2] 
 

in which  

𝛯1 = [ℜ{𝑿}𝑇 , ℑ{𝑿}𝑇]𝑇  , 𝛯2 = [−ℑ{𝑿}𝑇, ℜ{𝑿}𝑇 ]𝑇. 

 

As we know 

𝑡𝑟(𝑨𝑖𝑨𝑖
𝐻) =

1

2
𝑡𝑟(𝑨̃𝑖𝑨̃𝑖

𝑇) 

therefore using (28) and (19), the real-valued form of ℎ̅𝑖(𝑨) would be: 

 

ℎ̃𝑖(𝑨̃) =
1

2
𝜂(1 − 𝛼)[∑ 𝑡𝑟(𝑨̃𝑗𝑨̃𝑗

𝑇𝑯̃𝑖) − √2𝝐𝒊 ∥ 𝑨̃𝑗𝑨̃𝑗
𝑇 ∥𝐹+ 2𝑚𝜎𝑛

2𝑘
𝑗=1 ]                                                             

(29) 

 

where 𝑨̃ = [𝑨̃1 ⋯ 𝑨̃𝑘] . So, using (29) the problem of (26) is recasted as: 

 

𝑚𝑖𝑛
𝑨,{𝜏𝑖 ,𝛾𝑖,𝜆𝑖}𝑖=1

𝑘
{∑ 𝜏𝑖 − 𝛾𝑖

𝑘
𝑖=1 |

𝑇𝑥𝑃 ≤ 𝑃

ℎ̃𝑖(𝑨̃) ≥ 𝛾𝑖   ∀𝑖

ℳ𝑖 ≽ 0, 𝜆𝑖 ≥ 0  ∀𝑖 
} .                                                                                          

(30) 
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To solve (30), we resort to use Algorithm 1 

and the main problem of (25) is solved using 

Algorithm 2. 

 

Algorithm 1  PCCP based Algorithm to solve (30) 

   1: Set 𝐿 ← 0 , and generate 𝑨̃0 = [𝑨̃1
0, ⋯ , 𝑨̃𝑘

0] randomly 

   2: Repeat 

   3:       using the following equation, find the first-order estimate of ℎ̃𝑖(𝑨̃) at 𝑨̃𝐿 

              ℎ̂𝑖(𝑨̃) = ℎ̃𝑖(𝑨̃𝐿) + 𝛻ℎ̃𝑖(𝑨̃𝐿)
𝑇

𝑣𝑒𝑐(𝑨̃ − 𝑨̃𝐿)                                           (31) 

   4: Solve the following problem 

                                 𝑚𝑖𝑛
𝑨,{𝜏𝑖 ,𝛾𝑖,𝜆𝑖}𝑖=1

𝑘
{∑ 𝜏𝑖 − 𝛾𝑖

𝑘
𝑖=1 |

𝑇𝑥𝑃 ≤ 𝑃

ℎ̂𝑖(𝑨̃) ≥ γi   ∀i

ℳi ≽ 0, λi ≥ 0  ∀i 
}                (32) 

   5: Convert 𝐀 to 𝐀̃ 

   6: 𝐀̃𝐋+𝟏 ← 𝐀̃ 

   7: L ← L + 1 

   8: Until some conditions are met, like L = Lmax , i.e., maximum iterations number 

                 or a small increment is seen for the objective function, i.e.,   

 

                                            ⃒ΓL − ΓL+1⃒ ≤ β ,   where   Γ = ∑k
i=1 τi − γi 

 

Proof of the convergence Algorithm 1 is in [7]. 

 

Algorithm 2 Algorithm to solve (25) 

  1: Generate 𝐁 randomly and put it in (30) 

  2:  j ← 0  

  3:  Repeat 

  4: Solve (30) using Algorithm 1 to find 𝐀 

  5: Put 𝐀 in (27) 

  6: Solve (27), find B and put it in (30) 

  7:  j ← j + 1 

  8: While  |(∑k
i=1 τi

B − γi)
j

− (∑k
i=1 τi

B − γi)
j+1

| ≤ β  

       where τi
B is the objective value of (27) 

 

Simulation Results 

We assess the performance of our system with 

the following scenario. We assume ∀i, ti = t. 
To continue the simulation process, we 

choose the following value for the parameter: 

β = 10−4. This value is chosen so that 

Algorithms 1 have enough time to converge 

with a proper performance [14]. We have 

done 200 rounds of Monte-Carlo simulations 

and all the given graphs have been averaged 

over these runs. 

In this simulation we want to evalute the sum 

of harvested energy and the sum of MSE 

afromentioned system by changing data 

uncertainty , set these prameters n = 3, m =

2, k = 3, t = 2, P = 1 , η = 0.7 and α = 0.3. 

We would test the system performance by 

three kinds of data uncertainty, smsll, medium 

and large, i.e., δ = 0.05, 0.25, 0.5. The state 

of δ = 0 is perfect CSI. 

In Figure.1, the sum MSE performance of the 

proposed algorithm is shown. It is clear that 

when the SNR is small, the sum MSE is 

mostly due to poor signal conditions and thus, 

the uncertainty regime is not that important. 

At high SNR regimes, the more uncertainty is 

in the CSI data, so decreasing the system 

performance since the uncertainty would lead 

to more conservativeness about the real state 

of the CSI. 



11 
 

In Figure. 2 the sum of energy harvested for 

the imperfect CSI cases, the perfect CSI case 

and the MM method of [5] is shown. It is clear 

with decreasing the uncertainty CSI data, the 

sum of harvested energy is increased. 

Interestingly, the proposed method would 

better performance from the MM method 

even experiencing small to medium 

uncertainty regimes, especially at higher SNR 

regimes. The perfect CSI case is about 40 −
60 percent better than the case with δ = 0.5 

and about 5 percent better than the case with 

small uncertainty. At high SNR regimes, our 

algorithm is harvesting about 40 percent more 

energy than the MM method even with data 

uncertainty regime δ = 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Change of Sum MSE by uncertainty size δ 

 

Figure 2 Sum energy harvested by changing uncertainty size δ 
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Conclusion 

In this paper, a MU-MIMO SWIPT system in 

a BC configuration is examined . We do not 

restrict the number of users. Each receiver has 

power splitter and all of them are able to 

receive both power and information 

simultaneously. We jointly optimize the 

precoders and the decoders by maximizing the 

sum of harvested energy in EH modules and 

minimizing the sum MSE of symbol detection 

of all links concurrently with constraint on BS 

power under imperfect CSI. We can recast this 

problem into a DC problem, with function 

which is bi-convex. We employ SDR method 

to determine the worst case of the sum MSE 

and exploit SBR method to find the minimum 

the sum of harvested energy. We use a PCCP 

algorithm with a combination of an ACS 

algorithm to solve the problem. The 

simulation results confirm the efficiency of 

the proposed algorithm. 

 

List of Symbols  
The following notations and assumptions are 

used throughout the paper. 

1. (⋅)T , Transpose of a matrix or a vector         

2.  (⋅)H , Hermitian of a matrix or a 

vector 

3. ∥⋅∥F
2  , Squared Frobenius norm of a 

matrix 

4. tr(⋅) , Trace of a matrix 

5. vec(⋅) , Vectorized matrix 

6. 𝐀 ⊗ 𝐁 , Kronecker product of 

matrices 

7. CN(𝛍, 𝚺) , The distribution of a 

circularly symmetric complex Gaussian 

(CSCG) random vector with mean 𝛍 and 

covariance matrix 𝚺 

8. ℂx×y , The space of x × y complex-

valued matrices 

9. ℝx×y , The space of x × y real-valued 

matrices 

10. MAT[{{𝐀i}i=1
n }] , is used to show a tall 

matrix that is composed of the stacking of a 

series of indexed matrices, i.e., [𝐀1
T, ⋯ , 𝐀n

T ]T 

11. 𝔼[. ] , Mathematical expectation of 

random variables 

12. 𝐈k   , Identity matrix of size k 

13. ℜ{⋅} and ℑ{⋅} , are used, respectively 

to denote the real and imaginary parts of a 

complex number. 

14. ∇h , Gradient of h 
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