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Abstract 

Simultaneous Wireless Information and 

Power Transfer (SWIPT) systems enable 

mobile phones to live much longer in the 

network. In this paper, we formulate an 

optimization problem to best design a multi-

user multi-antenna Broad-Cast (BC) system 

by simultaneously maximizing the sum of 

harvested energy and minimizing the sum 

Mean Square Error (MSE) for symbol 

detection at each receiver. This design 

problem is then recast as a multi-objective 

problem with the Difference of Convex (DC) 

bilinear structure. The final design problem is 

solved using the Alternating Convex Search 

(ACS) method and the Penalty Convex-

Concave Program (PCCP) procedure. 

Simulation results are extensively undergone 

to assess the performance of the proposed 

algorithms.  
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Introduction 

Due to the emergence and expansion of the 
Internet of Things (IoT) and wireless sensor 
networks (WSN) which are mostly battery 
powered devices, it is needed that in 
accordance with the submission of 
information, the power is also transferred to 
the devices. In this world, SWIPT 
(Simultaneous Wireless Information and 
Power Transfer) systems are must-have 
technologies for the future. In recent years, 
much attention has been paid to SWIPT and 
several research papers have been published: 
[1]-[3]. 
In a SWIPT-based system, there is an inverse 
relationship between the amount of harvested 
energy and the amount of system information 
capacity [4]. Therefore, a compromise must 
be made between the harvested energy and the 
amount of system information capacity. 
Therefore most research papers optimize one 
criterion with subject to another one[5]-[9]. 
Unlike most research papers, there are some 
papers that both criteria, harvested energy and 
information rate, are simultaneously 
optimized. A Multiple-User (MU) Multiple-
Input Multiple-Output (MIMO) SWIPT 
system is studied in [10] with one transmitter 
having N antennas and two distinct groups of 
receivers equipped with M antennas. The first 
group is composed of only Information 
Decoder (ID) receivers and the other group is 
made up from sole Energy harvesting (EH) 
receivers. Therefore none of the receivers can 
decode information and harvest energy 
simultaneously. 
In this paper, maximizing both the sum of 

harvested energy and the data rate is targeted. 

This problem is cast as a Difference of 

Convex (DC) problem. The authors solve this 

problem using a Majorization-Minimization 

(MM) approach. In [11] a heterogeneous 

energy harvesting network is studied, in 

which a Power Beacon (PB) (to transfer the 
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energy) and a Base Station (BS) (to transmit 

the information) coexist. The authors assumed 

K EH and one ID single-antenna users. 

Because both PB and BS are close to each 

other, there should be trade off between the 

harvested energy and the data rate. Because 

transferring energy would interfere with 

transmitting the information. To reduce this 

effect, a energy beamforming (BF) scheme is 

proposed. The authors aim to find the best 

energy BF vector in a way that, the sum of 

harvested energy and the data rate are 

maximized concurrently. To solve DC 

problem they use the proposed method in 

[12]. 

In the current paper, we want to design a MU-

MIMO SWIPT system with k receivers each 

of which has two parts, ID & EH. Every ID 

part is equipped with a decoder. 

Corresponding with each receiver, there is a 

precoder matrix in the transmitter. In the our 

problem formulation, we want to jointly 

optimize the precoders and decoders by 

simultaneously maximizing the sum of all 

energy harvested in all receivers, and 

minimizing the sum MSE of the symbol 

detection in them, with a constraint on the 

transmit power of the BS. As it can be seen, 

this problem can be cast as global multi-

objective program which is a non-convex 

problem. To solve this DC problem we use a 

Penalty Convex-Concave Program (PCCP) 

procedure [13],[14]. 

 

 

System Model 

Let’s assume a MU-MIMO SWIPT system 

with one BS, and k users in a broadcasting 

configuration, i.e., one transmitter and k 

receivers. The BS is equipped with n antennas 

and each of the receivers has m antennas. 

Vector of 𝐬i ∈  ℂti×1, i = 1, ⋯ , k is 

transmitted to the ith receiver by BS, in which, 

ti is the number of symbols of the ith receiver. 

We suppose that the distribution of these 

symbols are complex normal with zero-mean 

and variance of one, i.e., 𝐬𝐢 ∼ CN(𝟎, 𝐈𝐭𝐢
). The 

noise at each receiver is also assumed to have 

a complex normal distribution, i.e., 𝐧i ∈
ℂm×1 ∼ CN(𝟎, σn

2𝐈m). At the transmitter side, 

each vector of symbols is precoded using a 

matrix 𝐀i ∈  ℂn×ti and would be equalized at 

the receiver side using a matrix 𝐁i ∈  ℂti×m. 

At the end, the output vector at each of the 

receivers is denoted by 𝐳𝐢 ∈  ℂti×1. In 

addition, the power splitter splits the received 

power, Pr, into two parts controlled using a 

parameter, α  (0 ≤ α ≤ 1). αPr portion of it is 

sent to the ID module while the rest of it, (1 −
α)Pr, is sent to the EH module. After 

conversion, this energy is saved in a battery 

(BAT) that is used in uplink the mode. We 

also assume that the conversion efficiency of 

the EH module is 0 ≤ η ≤ 1. 

It should also be noted that the channel 

matrices of 𝐇i ∈  ℂm×n, between the BS and 

the ith user, are assumed to be completely 

known. The transmitted vector of symbols at 

the BS is denoted as 𝐱 ∈n×1 . It can be written 

as 𝐱 = ∑k
i=1 𝐀i𝐬𝐢. 

The received signals of each reciever in the ID 

module can be written as: 

 

𝐲i,ID = √α (𝐇i𝐱 + 𝐧i) =  √α (𝐇i  ∑ 𝐀j𝐬j + 𝐧𝐢

k

j=1

) 

=  √α 𝐇i𝐀i𝐬i + √α ∑ 𝐇i𝐀j𝐬j
𝐤
j=1≠i + √α𝐧i                 (1) 

                                                            

while the received signal of EH module would be 

 

𝐲i,EH = √1 − α(∑ 𝐇i𝐀j𝐬j
k
j=1 + 𝐧i) .                           (2) 

 

At each receiver, the ID module would decode 

its received signal using 𝐁i matrices and thus 

the output signal of each ID module would be 
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𝐳i = 𝐁i𝐲i,ID =  √α 𝐁i𝐇i𝐀i𝐬i + √α ∑ 𝐁i𝐇i𝐀j𝐬j
𝐤
j=1≠i + √α𝐁i𝐧i                     (3) 

 

 

The Proposed Algorithm with Perfect CSI 

In this paper, we want to find the best 𝐀𝐢 and 

𝐁i, i = 1, ⋯ , k matrices, such that the sum of 

harvested energy in their EH module is 

maximized while the sum MSE over all 

receivers is simultaneously minimized. It 

means that we want to solve both P1 and P2 

problems at the same time:   

 

(P1)       min
{𝐀𝐢,𝐁𝐢}i=1

k
∑ MSEi

k
i=1                                 (P2)       max

{𝐀𝐢}i=1
k

∑ Qi
k
i=1  

 

s. t.           TxP ≤ P                                            s. t.     TxP ≤ P                  (4) 

 

where 

Qi = η 𝔼[∥ 𝐲i,EH ∥2] = η(1 − α) [∑
k

j=1
∥ 𝐇i𝐀j ∥F

2+ mσn
2] 

is the harvested energy1 in each node                            

TxP = 𝔼[∥ 𝐱 ∥2] = ∑
k

i=1
∥ vec(𝐀i) ∥2 

is the transmit power of the BS and it is limited by P, and                                

MSEi = 𝔼[∥ 𝐳i − 𝐬i ∥2] =∥ √α𝐁i𝐇i𝐀i − 𝐈ti
∥F

2+ ασn
2 ∥ 𝐁i ∥F

2+ α ∑
k

j=1≠i
∥ 𝐁i𝐇i𝐀j ∥F

2 

 

is the MSE of the ith link. Using the following notations, we can reformulate P1 and P2 problems. 

If    

𝐀 = [𝐀𝟏, … , 𝐀𝐤] , 𝐁 = [𝐁𝟏, … , 𝐁𝐤] 

g0(𝐀, 𝐁) = ∑ MSEi

k

i=1

 , and h0(𝐀) = ∑ Qi

k

i=1

 

are assumed, then P1 and P2 can be written as P3 and P4 respectively. 

 

(P3)       min
𝐀,𝐁

g0(𝐀, 𝐁)                                      (P4)       max
𝐀

h0(𝐀) 

s. t.         TxP ≤ P                                            s. t.        TxP ≤ P                        (5) 

 

where 

 

h0(𝐀) = η(1 − α) ∑ ∑ ∥ (𝐈ti

T ⊗ 𝐇i) vec(𝐀j)
k
j=1

k
i=1 ∥2+ η(1 − α)mkσn

2         (6a) 

 

g0(𝐀, 𝐁) = α ∑ ∑ ∥ (𝐈ti

T ⊗ 𝐁𝐢𝐇i) vec(𝐀j) ∥2

k

j=1≠i

k

i=1

+ ∑ ∥ √α(𝐈ti

T ⊗ 𝐁𝐢𝐇i)vec(𝐀i) − vec(𝐈ti
) ∥2

k

i=1

 

 

                + ασn
2 ∑ ∥ vec(𝐁i) ∥2k

i=1                                                                   (6b) 

 

In this optimization problem. The function, 

g0(𝐀, 𝐁) is a bi-convex function, i.e., it is not 

simultaneously convex with respect to both 

                                                           
2- For convenience, in the sequel of the paper the two terms “energy” and “power” may be used interchangeably by         

assuming the symbol period to be equal to one.  

arguments, but if one parameter, for example, 

𝐀, is fixed, the function would be a convex 

one with respect to the second parameter. 
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Problem P3 is studied in [15], and the authors 

use Alternating Convex Search (ACS) [16] to 

solve it. To solve both P3 and P4 problems 

simultaneously, which is a multi-objective 

non-convex problem, we use vector 

optimization for finding pareto optimal (or 

optimal) points [17]. Therefore P3 and P4 can 

be written as P5 which is a convex-concave 

problem:   

 

(P5)       min
𝐀,𝐁

f0(𝐀, 𝐁) = g0(𝐀, 𝐁) − h0(𝐀) 

s. t.      TxP ≤ P                                          (7) 

 

To solve P5, considering 𝐁 is fixed, then we 

resort P5 by using ACS algorithm, therefore, 

we can write P5 into P6 and P7 form. To 

solve for 𝐀, we use a PCCP based algorithm 

to find a suboptimal solution. 

 

(P6)       min
𝐀

f(𝐀) = g0(𝐀) − h0(𝐀)                  (P7)       min
𝐁

g0(𝐁) 

 

s. t.      TxP ≤ P                                                                               (8) 

 

To solve P6, we need to rewrite it using real­valued parameters. If  

 

𝐚𝐢 = [ℜ{vec(𝐀𝐢)}T, ℑ{vec(𝐀𝐢)}T]  ∈ ℝ2nti×1 , 

 

𝐂𝐢 = 𝐈𝐭𝐢
𝐓 ⊗ 𝐁𝐢𝐇i ∈  ℂti

2×nti    ,   𝐃𝐢 = 𝐈ti

T ⊗ 𝐇i  ∈  ℂmti×nti ,  𝐆𝐢 = Ξ[𝐂𝐢]  , 𝐖𝐢 = Ξ[𝐃𝐢] 

 

Where 

  

Ξ[𝐗] = [Ξ1, Ξ2] 
 

in which   

Ξ1 = [ℜ{𝐗}T , ℑ{𝐗}T]T  , Ξ2 = [−ℑ{𝐗}T, ℜ{𝐗}T ]T. 

 

therefore, we can convert 

f(𝐀) = g0(𝐀) − h0(𝐀) 
 

 to a real-valued function f(𝐚) as follows : 

 

f(𝐚) = ∑ ∥ √α 𝐆𝐢𝐚𝐢 − 𝐞𝐢 ∥2+ α ∑ ∑ ∥ 𝐆𝐢𝐚j ∥2− η(1 − α) ∑ ∑ ∥ 𝐖𝐢𝐚j ∥2−k
j=1

k
i=1

k
j=1≠i

k
i=1

k
i=1

η(1 − α)mk σn
2   (9) 

 

where  

𝐞𝐢 = [vec(𝐈ti
)

T
, 𝟎

ti
2×1

T ]
T

  

 

and  

 

𝐚 = [𝐚𝟏, ⋯ , 𝐚𝐤] . 
Afterthese manipulations, P6 can be written as P8:   

 

(P8)       min
𝐚

f(𝐚) = g0(𝐚) − h0(𝐚) 

s. t.      PTx = ∑ ∥ 𝐚𝐢 ∥2≤ Pk
i=1                              (10) 
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To solve P8, we use Algorithm 1. 

 

Algorithm 1  PCCP based Algorithm to solve (P8) 

   1: Set L ← 0 , and generate 𝐚𝟎 = [𝐚𝟏
𝟎, ⋯ , 𝐚𝐤

𝟎] randomly 

   2: Repeat 

   3:      Convexification: use the following equation to find a first-order approximate of 

            h0(𝐚) at a typical point like 𝐚𝐋.  

 

ĥ0(𝐚) = h0(𝐚𝐋) + ∇h0(𝐚𝐋)T(𝐚 − 𝐚𝐋) = h0(𝐚𝐋) 

+2η(1 − α) ∑ ∑ (𝐚j
L)T𝐖𝐢

𝐓𝐖𝐢(𝐚j − 𝐚j
L)k

j=1
k
i=1                         (11) 

   4: Solve the following problem 

min
𝐚

{f(𝐚) = g0(𝐚) − ĥ0(𝐚)|PTx ≤ P}                                 (12) 

   5: 𝐚𝐋+𝟏 ← 𝐚 

   6: L ← L + 1 

   7: Until some conditions are met, like L = Lmax , i.e., maximum iterations number 

                 or a small increment is seen for the objective function, i.e.,   

  

⃒f(𝐚𝐋) − f(𝐚𝐋+𝟏)⃒ ≤ β 

 

Proof of the convergence Algorithm 1 is in 

[18]. Therefore final algorithm for solving P5 

is Algorithm 2. 

 

Algorithm 2 Algorithm to solve (P5) 

  1: Generate 𝐁 randomly and put it in f(𝐀) 

  2:  Repeat 

  3: Solve (P8) using Algorithm 1 to find 𝐚 

  4: Convert 𝐚 to 𝐀 put it in g0(𝐁) 

  5: Solve (P7), then put 𝐁 in f(𝐀) 

  6: Until f0(𝐀, 𝐁) changes is converged   

 

Simulation Results 

We assess the performance of our system in 

three different scenarios. We assume ∀i, ti =
t. To continue the simulation process, we 

choose the following value for the parameter: 

β ≤ 10−4. This value is chosen so that 

Algorithm 1 have enough time to converge 

with a proper performance [14]. We have 

done 200 rounds of Monte-Carlo simulations 

and all the given graphs have been averaged 

over these runs. 

Let's set n = 4, m = 3, k = 2, t = 1, P = 1,
η = 1 and α = 0.3. In this scenario the PCCP 

approach is compared with two other 

algorithms, MM [10] and the Block 

Diagonalization (BD) [19]. In [19] writters 

used BD procedure to maximaize system 

throughput by finding optimal precoders 

when power of interference signal become 

zero per users. Hence we can calculate the 

sum of harvested energy by finding optimal 

precoders and then compare it to PCCP. In 

[10], as we point it before, authors maximized 

sum rate and sum harvested energy over two 

distinct groups of users (ID and EH users) 

concurently with the MM procedure, 

therefore we can evaluate the common trend, 

"the sum of harvested energy", in contrast 

with PCCP. As you see in Figure.1, the 

harvested energy by the BD approach is much 

less than the other two approches because the 

number of degrees of freedom of BD 

procedure is less than the MM & PCCP [10]. 

The sum function energy has two parts, i.e., 

signal and noise part. As you can see in 

Figure. 1, PCCP & MM are nearly equal up to 

about SNR = 5dB because in low SNR (high 

noise power) regimes the noise part overcome 
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the signal part and the noise part are the same 

for MM & PCCP. With increasing SNR the 

signal part will be overcome the noise part. If 

we can find better beamformers, the amount 

of the signal part of the sum energy function 

is boosted. This graph showes us the users of 

the PCCP procedure absorb about 30% more 

power than the users of the MM procedure. 

Let's set n = 4, k = 3, t = 2, P = 1, η =

0.7  and α = 0.3. As you know massive 

MIMO systems are sperading in wireless 

communication networks then in this scenario 

we want to show the effect of adding one more 

receiving antennas. Because of limitations on 

computer resources we can't simulate with 

more antennas. In Figure.2, solid lines is the 

sum of harvested energy trend and dash lines 

is the sum MSE of symbol detection trend. At 

high SNR regime, the sum of harvested 

energy is somehow independent of SNR. It is 

because the dominant term of energy comes 

from the signal part and the contribution of 

noise is low. It is also obvious from this Figure 

that by reducing the SNR, or apparently, by 

increasing the noise level, the noise signal can 

also contribute to the harvested energy and 

this increases the amount of absorbed energy. 

As it is expected, if m = 3 receive antennas 

are exploited , a better MSE can be 

experienced. when the SNR at the transmitter 

side is very poor or very high, there is no large 

gain of using one more antennas. In the 

middle of these two bounds, we can see the 

effect of adding one more receiving antennas. 

The sum of harvested energy at mid-to-high 

SNR and at low SNR regimes, and for the sum 

MSE at mid-SNR regimes on average, 21%  

and 23% and 5%  the performance 

improvement is gained, respectively. 

Let's set n = 3, m = 2, k = 3, t = 2, P =

1 and η = 0.7. The influence of variation of 

the power splitter ratio α, can be seen 

obviously in Figure. 3. A larger portion of the 

received energy is transferred to the ID 

module by increasing α . Therefore, the 

harvested energy (solid lines) in the EH 

module will decrease and the sum MSE (dash 

lines) would be better. There is no big 

difference between the sum MSE of the 

system at high SNR regimes, i.e., low noise 

powers, because there is enough energy in the 

ID module to find the information symbols 

despite of the value of α, This difference get 

more clear with large noise powers. By 

decreasing α, the harvested energy would 

improve around 50% and vice versa , 

increasing α causes that the sum MSE would 

improve around 5%. 

 

Figure 1. Comparison of sum harvested energy with 3 different methods, PCCP, MM, BD 
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Figure 2. Sum MSE & sum energy by changing m 

 

 

Figure 3. Sum MSE & sum energy by changing power splitter ratio 𝛂 
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Conclusions 

In this paper, a MU-MIMO SWIPT system in 

a BC configuration is examined . We do not 

restrict the number of users. Each receiver has 

power splitter and all of them are able to 

receive both power and information 

simultaneously. We concurrently maximize 

the sum of harvested energy in EH modules 

and minimize the sum MSE of symbol 

detection of all links with constraint on BS 

power. We can recast this problem into a DC 

problem, with function which is bi-convex. 

We use a PCCP algorithm with a combination 

of an ACS algorithm to solve the problem. 

The simulation results confirm the efficiency 

of the proposed algorithm.  

 

List of Symbols 

  

The following notations and assumptions are 

used throughout the paper. 

1. (⋅)T , Transpose of a matrix or a vector         

2.  (⋅)H , Hermitian of a matrix or a 

vector 

3. ∥⋅∥F
2  , Squared Frobenius norm of a 

matrix 

4. vec(⋅) , Vectorized matrix 

5. 𝐀 ⊗ 𝐁 , Kronecker product of 

matrices 

6. CN(𝛍, 𝚺) , The distribution of a 

circularly symmetric complex Gaussian 

(CSCG) random vector with mean 𝛍 and 

covariance matrix 𝚺 

7. ℂx×y , The space of x × y complex-

valued matrices 

8. ℝx×y , The space of x × y real-valued 

matrices 

9. 𝔼[. ] , Mathematical expectation of 

random variables 

10. 𝐈k   , Identity matrix of size k 

11. ℜ{⋅} and ℑ{⋅} , are used, respectively 

to denote the real and imaginary parts of a 

complex number. 

12. ∇h , Gradient of h 
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