
21

Presenting Comprehensive Comparison between the New Intelligence Software

Testing Techniques

Emad Efatinasab*

Student at department of electrical and

computer engineering, University of

birjand,birjand,IRAN

emad.effati@gmail.com

Abolfazl Ajami

student at department of industrial

engineering and systems, Tarbiat modares

university,Tehran,IRAN

a.ajami@modares.ac.ir

Abstract

in this article, we will take a deeper look at

software testing, its methods and,

applications. If we want to have a simple

definition of software testing, we can say that

"software experimenting is the development

of running an application with the guidance of

finding bugs and subsequently improving its

quality."[1] Software testing is a critical

process that plays a role in ensuring the

quality of software systems. Experimenting is

currently considered an industry in the field of

software. Software testing success is always

determined based on generated test cases and

their prioritization [2]. Therefore, it consumes

more effort, time, and, cost. Today, a

considerable number of soft computing-based

approaches are available for better exactness

in testing. This paper aims to provide a review

of some work that has been done in the

software testing area by using soft computing

techniques. This paper will be suggesting an

approach for data flow testing using PSO and

ACO. This paper presents how PSO and ACO

algorithm is used for optimizing the issue of

data flow testing.

Keywords Software testing technique,

Evolutionary Algorithm, Soft Computing

Introduction

Testing mainly comprises of static testing and
dynamic testing. The experiment, which does
not require any tool, is called Static testing
and, it is done without executing the program.
Dynamic testing is performed with the
execution of code, and it is a part of
validation. In this testing, test data is given to
the system in the form of input, and results are
checked against the expected output while
executing the software as the structure of logic
is not considered in this testing. [3] On the
other hand, white box testing is another
essential technique in dynamic testing. It is
also known as structural testing as whole
structure design, and code is tested, and it
aims to test the internal parts and uncover
bugs as many as possible in the logic of the
program.
Software amplification is the process of
imagining, distinguish, proposing, Coding,
documenting, Experimenting, and mending
bugs in building and keeping applications,
frames, or other software parts.
Software amplification is the movement of
writing and keeping an original code, still, on
a broader concept, it covers everything from
the basic idea of the desired software to the
Terminal emergence of the software,
sometimes in a trace and structured
movement. Therefore, software amplification
can contain prowl, new process, prototyping,
reconciliation, replication, reengineering,
maintenance, or any activity that leads to
software crop.
 Software can be extended for a diversity of
object, the three most Usual of which are
meeting specific needs for a particular
customer / business (specific software),

International Journal of Innovation in Computer Science and Information Technology

Vol.3, NO.2 , P: 21 - 30

Received : 3 June 2021

Accepted : 29 June 2021

mailto:emad.effati@gmail.com
mailto:a.ajami@modares.ac.ir

22

meeting a diagnosed need for a set of potential
users (source software Open and
commercial), or for Private Utilization (for
example, a scholar can write software to
Robotize a typical job). Embedded software
development, that is, the development of
embedded software, which is used, for
example, to control consumer products,
requires the integration of the software
Extension process with the extension of
Controlled physical produce. Software system
emphasizes usage and the programming
Movement itself and, it is often extended
singly. [4]
 Today, for a large project, there are large
numbers of test cases required. So it becomes
difficult for the tester to test large and
complex programs. Therefore, there is need to
reduce the testing set to generate optimal test
data, which further reduces the time and cost
involved in testing. This paper focuses on the
soft computing techniques, which are guided
by data method correlation in the scheme to
quest for assay data to fulfill the data method
choice criterion. [5] This paper presents an
algorithm of PSO and ACO, the soft
computing techniques to produce test data,
which gives a healthy face of software Shield.
This paper will be comparing the path
coverages covered by PSO and ACO, which
are used for data flow testing.
 The border of the Letter is organized as
follows. Part2 gives some basilar meaning and
definitions, and a survey of various research

papers related to dynamic testing. Section 3
describes the data-flow analysis technique.
Section 4 shows a PSO and ACO algorithm
that is used for optimizing data-flow testing in
the proposed approach. Section 5 will show
the result of path coverage done by ACO and
PSO. Part 6 introduces the conclusion and
future work. [6].

LITERATURE REVIEW
Here, this paper discusses some basilar
meanings that are used throughout this work.

A. Control Progress Diagram
A control progress diagram is a control flow
diagram that describes a commercial process,
or summary. The control flow diagram was
introduced in the 1950s ,and has been widely
used in several disciplinary engineering. [8] It
is one of the classic business processing
methodologies, parallel to flowcharts, data
flow diagrams, functional flow block
diagrams, Gantt charts, Pert diagrams and
IDEF.

B. Dominance Tree
In graph theory, the graph tree is connected,
without distance. Trees are widely used in
computer science and data structure. Such as
binary search trees, stacks [9], Hoffmann trees
[10] for information compression, and so on.
Figure. 2, gives the dominator tree of program
1.A graph without a circle is called a tree. [11]

Fig.1.Program 1[12]

Enter Program:

int main ()

{

int a, b, c;

a=5;

b=6;

c=a+b;

printf (a, b, c);

return 0;

}

23

Fig. 2. Dominance Tree [13]

The definition of a dominant node was first

proposed by Reiss Prosser in an article

entitled Applications of the Boolean Matrix

for Flow Chart Analysis [14]. In this article,

he did not provide an algorithm for finding

dominating nodes and only defined it. The

first algorithm for this problem was proposed

ten years later by Edward Lowry and Medlock

[15]. Its applications include program

optimization, code generation, and circuit

testing. Compilers also make extensive use of

information from node dominance. For

example, one application in the compiler is to

find loops in optimizing code with the help of

base blocks [16].In directional graphs, we say

that node w overcomes node n .For every node

n all paths from n to v pass- through node w.

As a result, it can be said that each node

overcomes itself. According to the definition,

each node can be considered a set of dominant

nodes that overcome this node. It is also

possible to define a dominant tree for each

graph, each node in the graph, the ancestors of

this node in the tree are the nodes that

dominate this node in the graph. [17].

Fig.3. Block Diagram of Data Flow Testing Technique [18]

24

Node v overcomes node w when node w and

v is vv.

Instant Dominant Nodes V-node is a set of

nodes that strictly overcomes only node v and

does not precisely overcome any other node

[19].

Node-Dominant Nodes, V-nodes are a set of

nodes whose node V overcomes their direct

parents but does not strictly overcome those

nodes. [20]

DATA FLOW INVESTIGATION
METHOD
In system definitions, organizations can be
defined as a system that uses human resources
and materials to work for a particular purpose
[21] These organizations can be divided into
smaller systems (departments, departments
and groups). Each of these smaller systems
works for a specific purpose, such as
accounting, sales, production, information
processing, and management [22] all systems
receive a set of inputs and convert them to
outputs after processing. Of course, an ideal
system is one that can reorganize itself
without the need for human decision-making.
For example, a clothing manufacturer in Italy
uses such a system to sell its products. The
company produces all its T-shirts in white and
keeps them in stock[24] Using an intelligent
information system, the trend of demand for
goods in the market is analyzed, in the last
stage of sending goods to the market, the
coatings become the colors that have received
the most demand from customers. It should be
noted that the subsystems of a more extensive
system are interconnected and, in many cases,
interdependent. The figure below shows this
dependence. In this system, the outlet of the
production subsystem is used as the input of
the marketing system and the outlet of the
same marketing system is used as the input of
the production system. A system or subsystem
in an organization can be represented
graphically by a set of methods. These
methods want to identify system boundaries

and show the information flowing in a system.
[33] Data Flow Diagram is one of these
methods. Data Flow Chart (DFD) focuses on
the inputs and outputs of information to a
system as well as the processes performed on
them. This diagram is made using four main
components: a square with a shadow, an
arrow, a rectangle with rounded corners, and
a rectangle with an open head. These shapes
are shown in the figure below. Shaded squares
are used to display external inputs and data
(another department, an individual, or a
machine) that can send or receive data to or
from the system. Each data must be named by
name. To prevent data flow lines from being
interrupted, data can be repeated several times
in a chart. [35]

Arrows indicate the transfer of information

from one point to another. Because

information is about a person, place, or thing,

the flow of information must be described by

a name. Rectangles with rounded corners are

used to represent information processing.

Information processing causes changes or

transformations in the input information, so

the information output of a process must be

named with a new title.
The last functional element in DFD diagrams
is a rectangle with an open head that is used to
display the data storage center. Like other
DFD elements, this element must be named by
a specific name. Data centers are numbered by
a particular, coder such as D1, D2, D3, etc. In
drawing DFD diagrams, it should be noted
that each process must have at least one input
and one output. Another point is that an
external input cannot be connected directly to
a data storage (file) center, and for this, the
data must be transferred through a process.
Each DFD model should not have more than
9 processes. If a model has more than nine
functions, the same function can be put in pro
and transferred to a lower level as a
subsystem. The following figure shows an
example of a DFD model with real names.

25

Fig.4.Comparisonof Testing Techniques

SUGGESTED METHOD
Ace heap Optimization (PSO) is one of the
most severe Sagacious optimization
algorithms in the field of heap sense. The
algorithm was present by James Kennedy and
Russell C. Eberhart in 1995 and is inspired by
the Civic behavior of animals such as fish and
birds that live together in Little and Enormous
groups [36] In the PSO algorithm, the organ
of the answer habitancy communicate directly
with each other and solve the problem by
exchanging information with each other and
recalling good memories of the past. The PSO
algorithm is appropriate for a diversity of
continuous and discrete problems and gives
excellent, answers to various optimization
difficulties [37]
PSO can perform much better in achieving
more def-use coverage as compared to other
existing search-based optimization techniques
like ACO, GA, etc. as it has the advantage of

memory so it can keep information of
reasonable solutions of all particles. The
algorithm of PSO consists of these steps given
below: [38]

1. Initiate Swarm
2. Repeat
3. For p=1 to number of Ace do
4. Appraise (p)
5. Update Experiment (P)
6. Update proximity best (p, k)
7. For d=1 to number of dimensions’ do
8. Stroke (p, d)
9. End for
10. End for
 11. Until criterion

The consecutive PSO exemplar uses a real-
valued multi-dimensional region as opinion
region, and subsume the situation of each ace
in that region using the following equations:

𝑣𝑖𝑑
𝑡+1 = 𝑤. 𝑣𝑖𝑑

𝑡 + 𝑐1.𝜑1. (𝑝𝑖𝑑
𝑡 − 𝑥𝑖𝑑

𝑡) + 𝑐2.𝜑2.. (𝑝𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡)

xid
t+1 = xid

t + vid
t+1

Equation 1

1

26

Fig.5. Flow Graph [39]

The ant colony algorithm, or "Ant Colony
Optimization" as its name implies, is based on
the natural behavior of the ant colonies and the
worker ants working in them. The process of
finding food sources in an ant colony is very
efficient. When ants start exploring for food
sources, they naturally find a "reasonable" and
"optimal" path from their nest to food sources.
[40] In other words, the ant population is
somehow always able to find an optimal path
to provide the required food. Simulation of
such optimal behavior forms the basis of ant
colony optimization. In this article, the ant
colony algorithm is fully described. It should
be noted that the exact name of this algorithm
is ant colony optimization, which is often
called the ant colony algorithm. Suppose two
ants are moving from the nest to the food
source through two completely different
paths. As the ants move toward the food
source, they emit a trace of "pheromone" into
the environment, which disintegrates
naturally over time. The ant that (randomly)
selects the shortest path to the food source
begins the return journey to the nest earlier
than the other ants. In this case, on the way
back to the nest, the ant starts to release the
pheromone back into the environment,
thereby reinforcing the pheromone trail left in
the shortest path.

1. Build the searching model
2. Chose one Complainant-clear way
from the way shield and mark it.
3. Put ants at the start nook of the quest
model.
4. Ant moves and enters the number of
nook.
5. If (ant does not get to the end node) go
to step four.
6. Entry the way
7. Produce the corresponding data.
8. Perform the plan under test using the
produced data and entry the execution way.
9. Compute the similarity between the
execution way and the complainant-clear
way.
10. Update pheromone.
11. If (execution path does not shield the
complainant's clear path) go to step 3.
12. Entrer the test data.
13. If (there is an unmarked Complainant-
clear way in the way cover) go to step 2
14. Outlet the set of test data and the set of
covered complainant clear way.
15. End

The algorithm will automatically stop if there

are no unmarked complainant-clear way. In

the way shield.

27

Model of original ant density:

∆𝜏𝑖𝑗
𝑘 (𝑡, 𝑡 + 1) = ∫

𝑖𝑓 𝑎𝑛𝑡 𝑝𝑎𝑠𝑠𝑒𝑠 𝑖𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑄

0

In the initiatory afflux sample for any ant k, Q

is a constant; that is, the pheromone is

incremented by fix value. The number of

common nodes between the executed path and

the complainant clear path of the current

complainant -use pair is defined as Q. [41]

The updating pheromone formula is

𝜏𝑖𝑗(𝑡 + 𝑛) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗

Other ants instinctively follow the strongest

pheromone pathway in the environment and

reinforce the pheromone trail in that pathway.

After a certain period, not only does the

rejection of the pheromone in the shortest path

not disintegrate, but, as the rejection of the

pheromone of other ants accumulates, it

becomes more and more amplified. The path

in which the strongest pheromone trace is left

becomes the default path for the ants to move

from the colony to the food original and vice

versa.

The ant colony optimization method provides

a model for implementing optimization

methods. So far, various successful

implementations of this optimization method

have been proposed. Algorithms such as "Ant

System", "Ant Colony System" and "Min-

Max Ant System" are among the most

important and successful implementations of

this optimization method.

Fig.6. process for data flow testing

Equation 2

1

Equation 3

28

Algorithms derived from the ant colony

algorithm are a subset of Swarm Intelligence

methods. This methodology is a field of

research and study that studies algorithms

inspired by the concept of "swarm behaviors"

(Swarm Behaviors). Congestion intelligence

algorithms consist of a set of simple

individual entities that interact and collaborate

with each other through self-organization.

Self-organization means the lack of a central

control system to control and coordinate the

members of a crowded intelligence system.

Fig.7. path coverage of PSO and ACO

CONCLUSION AND FUTURE WORK

 This paper has reviewed various research
papers based on dynamic testing and has
found that most of the works concentrate on
the coverage, but none of them told about
which technique is better suited for full
coverage. Evolutionary structural testing is a
verge used to produce. test cases that use GA,
ACO, or other search-based optimization,
which is guided by data flow Affinity in the
program to cover the complainant use
association. Since cost and coverage are two
essential factors in case of testing. This paper
has proposed a process for data flow testing
using PSO and ACO, and it has been observed
that in comparison with PSO (particle swarm
optimization) and ACO (Ant Colony
Optimization) PSO is giving a better path
coverage than ACO. In Future work, the PSO
and ACO algorithms will be implemented in
performing data flow testing to provide an
efficient path with maximum code coverage
and minimum cost. Furthermore, the results
can be compared with other meta-heuristic
techniques such as GA (Genetic algorithms)
and BCO (Bee Colony Optimization), etc.
[42]

References

[1] Ahmed S. Ghiduk (2010) “A New
Software Data-Flow Testing Approach via
Ant Colony Algorithms” Universal Journal of
Computer Science and Engineering
Technology 1 (1), ISSN: 2219-2158, pp. 64-
72.
[2] Praveen Ranjan Srivastava, KmBaby
(1977) “Automated Software Testing Using
Metahurestic Technique Based on An Ant
Colony Optimization”, IEEE Transactions on
Software Engineering, vol. 3, no. 4, pp. 266-
278.
[3] D.Jeya Mala, V.Mohan (2007) “ABC
Tester - Artificial Bee Colony Based Software
Test Suite Optimization Approach.”, in
theProc. of 7th International Conference on
Hybrid Intelligent Systems (HIS‘07), pp. 84-
89. IEEE Press.
[4] K. Li, Z. Zhang and W. Liu (2009)
“Automatic Test Data Generation Based On
Ant Colony Optimization” in theProc. of Fifth
International Conference on Natural
Computation 2009, pp. 216-219. IEEE Press.
[5] P. R. Srivastava et al. (2009) “An
Approach of Optimal Path Generation using
Ant Colony Optimization” in the Proc. of
TENCON 2009, pp.1-6. IEEE Press.

29

[6] M. Dorigo and C. Blum (2005) “Ant
colony optimization theory: A survey”
Theoretical Computer Science, 344(2-3), pp.
243-278.
[7] Sanjay Singla, H. M. Rai and Priti
Singla (2011) “Automatic Test Data
Generation Approach using Combination of
GA and PSO with Dominance
Concepts”International Journal of Electronics
Engineering, 3 (1), 2011, pp. 95– 98.
[8] B. Adil et al. (2007) “Artificial Bee
Colony Algorithm and Its Application to
Generalized Assignment Problem Swarm
Intelligence: Focus on Ant and Particle
Swarm Optimization “in the proceedings of
International Conference of Computational
Intelligence, pp. 532–564.
[9] Mark Harman and Afshin Mansour
(2010) “Search-Based Software Engineering:
Introduction to the Special Issue of the IEEE
Transactions on Software Engineering” IEEE
Transaction on Software Engineering Vol.
36, NO. 6, pp 479-486
[10] H. Li and C. Peng LAM, (2005) “An
Ant Colony Optimization Approach to Test
Sequence Generation for State-based
Software Testing,”in theProceedings of the
Fifth International Conference on Quality
Software (QSIC‘05), pp 255 – 264
[11] S. Rapps and E.J. Weyuker, (1985)
“Selecting software test data using data flow
information” IEEE Transactions on Software
Engineering, vol.11, no. 4, pp. 367-375
[12] M.R. Girgis and M.R. Woodward,
(1985) “An integrated system for program
testing using weak mutation and data flow
analysis,” in the Proceedings of Eighth
International Conference on Software
Engineering, IEEE Computer Society, pp.
313-319
[13] K. Li, Z. Zhang and J. Kou, (2010)
“Breading software test data with Genetic-
Particle swarm mixed Algorithms”, Journal of
Computers, Vol. 5, No. 2, pp. 258-265.
[14] M.Darbandi; “Proposing New
Intelligence Algorithm for Suggesting Better
Services to Cloud Users based on Kalman
Filtering”; Published by Journal of Computer
Sciences and Applications (ISSN: 2328-
7268), Vol. 5, Issue 1, 2017; PP. 11-16; DOI:
10.12691/JCSA-5-1-2; USA
[15] S.Singhla, M. Pezz`e, and M.
Vivanti,(2013) “Quantifying the complexity
of data flow testing,” in IEEE International

Workshop on Automation of Software Test
(AST), pp. 132–138
[16] A. J. Offutt, J. Pan, K. Tewary, and T.
Zhang,(1996) “An experimental evaluation of
data flow and mutation testing,” Softw.. Pract.
Exper., vol. 26, pp. 165–176.
[17] E. J. Weyuker, (1990) “The cost of
data flow testing: An empirical study,” IEEE
Transactions on Software Engineering (TSE),
vol. 16, no. 2, pp. 121–128.
[18] P. G. Frankl and E. J. Weyuker,(1988)
“An applicable family of data flow testing
criteria.,” IEEE Trans. Software Eng., vol. 14,
no. 10, pp. 1483–1498.
[19] P.Mathiyalagan, (2010) “Grid
scheduling Using Enhanced PSO Algorithm”
International Journal on Computer Science
and Engineering, Vol. 02, No. 02, pp.140-145.
[20] M.Darbandi; “Proposing New
Intelligent System for Suggesting Better
Service Providers in Cloud Computing based
on Kalman Filtering”; Published by HCTL
International Journal of Technology
Innovations and Research, (ISSN: 2321-
1814), Vol. 24, Issue 1, PP. 1-9, Mar. 2017,
DOI: 10.5281/Zenodo.1034475.
[21] JanviBadlaney,F.E.Allen, and J.
Cocke, (1976) “A program data flow analysis
procedure,”Communication of the ACM, 19
(3), pp. 137-147.
[22] X. Zhang, H. Meng, and L. Jiao,
(2005) “Intelligent particle swarm
optimization in multi-objective optimization”,
in theProc. of the 2005 IEEE Congress on
Evolutionary Computation, Vo1, pp. 714-719.
IEEE Press.
[23] A. Bouchachia, (2007) “An immune
genetic algorithm for software test data
generation” in the Proc. of 7th International
Conference on Hybrid Intelligent Systems
(HIS‘07), pp. 84-89. IEEE Press.
[24] Alok Singh, (2009) “An artificial bee
colony algorithm for the leaf-constrained
minimum spanning tree problem”, Applied
Soft Computing, Volume 9, Issue 2, pp. 625-
631.
[25] K. Li, Z. Zhang and J. Kou (2010)
“Breading software test data with Genetic-
Particle swarm mixed Algorithms”, Journal of
Computers, Vol. 5, No. 2, pp. 258-265.
[26] P. McMinn, (2004) “Search-based
software test data generation: A Survey,”
Software Testing, Verification and
Reliability, vol. 14, no. 2, pp. 105–156.

30

[27] V. Gazi, (2007) "Asynchronous
Particle Swarm Optimization," in Signal
Processing and Communications
Applications, SIU 2007. IEEE 15th, 2007, pp.
1-4.
[28] A. Windisch, S. Wappler, and J.
Wegener, (2007) “Applying particle swarm
optimization to software testing”, ACM,
GECCO, London, England, United Kingdom,
New York, pp. 1121-1128.
[29] S. Rapps and E. J. Weyuker, (1985)
“Selecting software test data using data-flow
information,” IEEE Transactions on Software
Engineering (TSE), vol. 11, pp. 367–375.
[30] Huaizhong Li and C.Peng Lam,(2004)
“Software Test Data Generation using Ant
Colony Optimization”, Transactions on
Engineering, Computing and Technology,
ISSN 1305-5313, pp. 105- 156.
[31] Chen Yonggang, Yang Fengjie, Sun
Jigui. (2006). “A new Particle swam
Optimization Algorithm.” Journal of Jilin
University, 24(2), pp. 181-183.
[32] Praveen Ranjan Srivastava, (2009)
“Optimization of software testing using
Genetic Algorithm”, International Journal of
Artificial Intelligence and Soft Computing,
Interscience publisher, Volume 1, Numbers 2-
3, pp. 363-375.
[33] Marco Dorigoa and Thomas Stutzle,
(2005) “Ant colony optimization, The
Knowledge Engineering Review", Cambridge
University Press New York, NY, USA.,
Volume 20, Pp: 92 – 93.
[34] Praveen Ranjan Srivastava, Baby,
(2010) “Evolutionary Computation and
Optimization Algorithms in Software
Engineering: Applications and Techniques”,
IGI Global USA, pp 161-183.
[35] Sumesh Agarwal, Shubham Gupta,
and Nitish Sabharwal, (2016) “Automatic
Test Data Generation-Achieving Optimality
Using Ant-Behaviour” International Journal

of Information and Education Technology,
Vol. 6, No. 2, pp 117-121.
[36] H. Zhu, P. Hall, and J. May,(1997)
“Software unit test coverage and adequacy,”
ACM Computing Surveys, vol. 29, no. 4, pp.
366–427.\
[37] A. S. Andreou, K. A. Economides, and
A. A. Sofokleous, (2007) “An automatic
software test-data generation scheme based on
data flow criteria and genetic algorithms,”7th
IEEE International Conference on Computer
and Information Technology, pp. 867-872.
[38] F. E. Allen and J. Cocke, (1976) “A
program data flow analysis procedure”,
Communication of the ACM, Vol. 19, No. 3,
pp. 137–147.
[39] J. Kennedy and R. Eberhart, (1995)
“Particle swarm optimization”, IEEE
International Conference on Neural
Networks, IEEE Press, pp. 1942–1948.
[40] K. O. Jones, (2005) “Comparison of
genetic algorithm and particle swarm
optimization”, in the Proceedings of the
International Conference on Computer
Systems and Technologies.
[41] S. Yuhui and R. C. Eberhart, (1998)
“Parameter selection in particle swarm
optimization,” in the Proceedings of the 7th
International Conference on Evolutionary
Programming, Vol. 1447, pp. 591- 600.
[42] Z. W. Liang, W. H. Sen, Z. Jun and X.
D. Jian, (2008) “Novel particle swarm
optimization with heuristic
mutation,”Computer Engineering and Design,
pp. 3402-3405.
[43] S. Haghgoo, M. Hajiali, A. Khabir,
“Prediction and Estimation of Next Demands
of Cloud Users based on their Comments in
CRM and Previous usages”, International
IEEE Conference on Communication,
Computing & Internet of Things; Feb. 2018,
Chennai.DOI:10.1109/IC3IoT.2018.8668119
.

